Abstract
We previously showed that angiotensin II (Ang II) and angiotensin-(2-8)-peptide [Ang-(2-8)] activate a phosphoinositide-specific phospholipase C (PLC) and cause calcium mobilization in rat aortic vascular smooth-muscle cells (VSMC), while Ang II and Ang-(1-7) produce prostaglandins. To define further the signal-transduction mechanisms activated by angiotensin peptides in smooth-muscle cells, we measured diacylglycerol (DAG) accumulation in response to different angiotensin peptides and its inhibition by subtype-selective receptor antagonists. Both an initial (10 s) and secondary (10 min) phase of DAG production in response to 100 nM Ang II were inhibited by 1 microM losartan (DuP 753), an AT1 antagonist, while 1 microM PD 123177, an AT2 antagonist, was ineffective. In contrast, the heptapeptide Ang-(1-7) did not produce DAG in VSMC. Ang II also caused the hydrolysis of phosphatidylinositol and phosphatidylcholine, the formation of phosphatidic acid and the formation of phosphatidylethanol (PEt) in the presence of ethanol, through activation of a PLD and a PLD-induced transphosphatidylation reaction. A similar concentration of Ang-(2-8) also activated PLD; in contrast, Ang-(1-7) was ineffective. PEt production by 100 nM Ang II was significantly attenuated by the AT1 antagonists losartan, its metabolite EXP 3174 or L-158,809 (all at 1 microM), whereas a similar concentration of the AT2 antagonists CGP 42112A or PD 123177 was ineffective. The production of PEt by Ang II was also partially attenuated by the removal of extracellular calcium and potentiated by increasing calcium concentrations, indicating that PLD activity is partially dependent on extracellular calcium. Thus VSMC PLD is coupled to an AT1 receptor and occurs in response to Ang II or Ang-(2-8), but not Ang-(1-7). Since AT1 receptors in VSMC are also coupled to activation of PLC, both PLC and PLD may be coupled to the same or a different AT1 receptor. Alternatively, PLD may be sequentially activated in response to Ang II activation of PLC and a subsequent increase in calcium concentration.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Berk B. C., Vekshtein V., Gordon H. M., Tsuda T. Angiotensin II-stimulated protein synthesis in cultured vascular smooth muscle cells. Hypertension. 1989 Apr;13(4):305–314. doi: 10.1161/01.hyp.13.4.305. [DOI] [PubMed] [Google Scholar]
- Bocckino S. B., Blackmore P. F., Wilson P. B., Exton J. H. Phosphatidate accumulation in hormone-treated hepatocytes via a phospholipase D mechanism. J Biol Chem. 1987 Nov 5;262(31):15309–15315. [PubMed] [Google Scholar]
- Broekhuyse R. M. Quantitative two-dimensional thin-layer chromatography of blood phospholipids. Clin Chim Acta. 1969 Mar;23(3):457–461. doi: 10.1016/0009-8981(69)90349-0. [DOI] [PubMed] [Google Scholar]
- Criscione L., Thomann H., Whitebread S., de Gasparo M., Bühlmayer P., Herold P., Ostermayer F., Kamber B. Binding characteristics and vascular effects of various angiotensin II antagonists. J Cardiovasc Pharmacol. 1990;16 (Suppl 4):S56–S59. doi: 10.1097/00005344-199016004-00012. [DOI] [PubMed] [Google Scholar]
- Daemen M. J., Lombardi D. M., Bosman F. T., Schwartz S. M. Angiotensin II induces smooth muscle cell proliferation in the normal and injured rat arterial wall. Circ Res. 1991 Feb;68(2):450–456. doi: 10.1161/01.res.68.2.450. [DOI] [PubMed] [Google Scholar]
- Farhy R. D., Ho K. L., Carretero O. A., Scicli A. G. Kinins mediate the antiproliferative effect of ramipril in rat carotid artery. Biochem Biophys Res Commun. 1992 Jan 15;182(1):283–288. doi: 10.1016/s0006-291x(05)80142-1. [DOI] [PubMed] [Google Scholar]
- Griendling K. K., Rittenhouse S. E., Brock T. A., Ekstein L. S., Gimbrone M. A., Jr, Alexander R. W. Sustained diacylglycerol formation from inositol phospholipids in angiotensin II-stimulated vascular smooth muscle cells. J Biol Chem. 1986 May 5;261(13):5901–5906. [PubMed] [Google Scholar]
- Griendling K. K., Taubman M. B., Akers M., Mendlowitz M., Alexander R. W. Characterization of phosphatidylinositol-specific phospholipase C from cultured vascular smooth muscle cells. J Biol Chem. 1991 Aug 15;266(23):15498–15504. [PubMed] [Google Scholar]
- Gunther S., Alexander R. W., Atkinson W. J., Gimbrone M. A., Jr Functional angiotensin II receptors in cultured vascular smooth muscle cells. J Cell Biol. 1982 Feb;92(2):289–298. doi: 10.1083/jcb.92.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ha K. S., Exton J. H. Differential translocation of protein kinase C isozymes by thrombin and platelet-derived growth factor. A possible function for phosphatidylcholine-derived diacylglycerol. J Biol Chem. 1993 May 15;268(14):10534–10539. [PubMed] [Google Scholar]
- Huang C. F., Cabot M. C. Phorbol diesters stimulate the accumulation of phosphatidate, phosphatidylethanol, and diacylglycerol in three cell types. Evidence for the indirect formation of phosphatidylcholine-derived diacylglycerol by a phospholipase D pathway and direct formation of diacylglycerol by a phospholipase C pathway. J Biol Chem. 1990 Sep 5;265(25):14858–14863. [PubMed] [Google Scholar]
- Huang C., Wykle R. L., Daniel L. W., Cabot M. C. Identification of phosphatidylcholine-selective and phosphatidylinositol-selective phospholipases D in Madin-Darby canine kidney cells. J Biol Chem. 1992 Aug 25;267(24):16859–16865. [PubMed] [Google Scholar]
- Jaiswal N., Jaiswal R. K., Tallant E. A., Diz D. I., Ferrario C. M. Alterations in prostaglandin production in spontaneously hypertensive rat smooth muscle cells. Hypertension. 1993 Jun;21(6 Pt 2):900–905. doi: 10.1161/01.hyp.21.6.900. [DOI] [PubMed] [Google Scholar]
- Jaiswal N., Tallant E. A., Diz D. I., Khosla M. C., Ferrario C. M. Subtype 2 angiotensin receptors mediate prostaglandin synthesis in human astrocytes. Hypertension. 1991 Jun;17(6 Pt 2):1115–1120. doi: 10.1161/01.hyp.17.6.1115. [DOI] [PubMed] [Google Scholar]
- Janiak P., Pillon A., Prost J. F., Vilaine J. P. Role of angiotensin subtype 2 receptor in neointima formation after vascular injury. Hypertension. 1992 Dec;20(6):737–745. doi: 10.1161/01.hyp.20.6.737. [DOI] [PubMed] [Google Scholar]
- Lang U., Vallotton M. B. Effects of angiotensin II and of phorbol ester on protein kinase C activity and on prostacyclin production in cultured rat aortic smooth-muscle cells. Biochem J. 1989 Apr 15;259(2):477–483. doi: 10.1042/bj2590477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larrodera P., Cornet M. E., Diaz-Meco M. T., Lopez-Barahona M., Diaz-Laviada I., Guddal P. H., Johansen T., Moscat J. Phospholipase C-mediated hydrolysis of phosphatidylcholine is an important step in PDGF-stimulated DNA synthesis. Cell. 1990 Jun 15;61(6):1113–1120. doi: 10.1016/0092-8674(90)90074-o. [DOI] [PubMed] [Google Scholar]
- Lassègue B., Alexander R. W., Clark M., Griendling K. K. Angiotensin II-induced phosphatidylcholine hydrolysis in cultured vascular smooth-muscle cells. Regulation and localization. Biochem J. 1991 May 15;276(Pt 1):19–25. doi: 10.1042/bj2760019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leach K. L., Ruff V. A., Wright T. M., Pessin M. S., Raben D. M. Dissociation of protein kinase C activation and sn-1,2-diacylglycerol formation. Comparison of phosphatidylinositol- and phosphatidylcholine-derived diglycerides in alpha-thrombin-stimulated fibroblasts. J Biol Chem. 1991 Feb 15;266(5):3215–3221. [PubMed] [Google Scholar]
- Leung K. H., Chang R. S., Lotti V. J., Roscoe W. A., Smith R. D., Timmermans P. B., Chiu A. T. AT1 receptors mediate the release of prostaglandins in porcine smooth muscle cells and rat astrocytes. Am J Hypertens. 1992 Sep;5(9):648–656. doi: 10.1093/ajh/5.9.648. [DOI] [PubMed] [Google Scholar]
- Martin T. F., Hsieh K. P., Porter B. W. The sustained second phase of hormone-stimulated diacylglycerol accumulation does not activate protein kinase C in GH3 cells. J Biol Chem. 1990 May 5;265(13):7623–7631. [PubMed] [Google Scholar]
- Pessin M. S., Baldassare J. J., Raben D. M. Molecular species analysis of mitogen-stimulated 1,2-diglycerides in fibroblasts. Comparison of alpha-thrombin, epidermal growth factor, and platelet-derived growth factor. J Biol Chem. 1990 May 15;265(14):7959–7966. [PubMed] [Google Scholar]
- Pfeilschifter J., Huwiler A., Merriweather C., Briner V. A. Angiotensin II stimulation of phospholipase D in rat renal mesangial cells is mediated by the AT1 receptor subtype. Eur J Pharmacol. 1992 Jan 14;225(1):57–62. doi: 10.1016/0922-4106(92)90039-x. [DOI] [PubMed] [Google Scholar]
- Preiss J., Loomis C. R., Bishop W. R., Stein R., Niedel J. E., Bell R. M. Quantitative measurement of sn-1,2-diacylglycerols present in platelets, hepatocytes, and ras- and sis-transformed normal rat kidney cells. J Biol Chem. 1986 Jul 5;261(19):8597–8600. [PubMed] [Google Scholar]
- Prescott M. F., Webb R. L., Reidy M. A. Angiotensin-converting enzyme inhibitor versus angiotensin II, AT1 receptor antagonist. Effects on smooth muscle cell migration and proliferation after balloon catheter injury. Am J Pathol. 1991 Dec;139(6):1291–1296. [PMC free article] [PubMed] [Google Scholar]
- Smith J. B. Angiotensin-receptor signaling in cultured vascular smooth muscle cells. Am J Physiol. 1986 May;250(5 Pt 2):F759–F769. doi: 10.1152/ajprenal.1986.250.5.F759. [DOI] [PubMed] [Google Scholar]
- Sunako M., Kawahara Y., Hirata K., Tsuda T., Yokoyama M., Fukuzaki H., Takai Y. Mass analysis of 1,2-diacylglycerol in cultured rabbit vascular smooth muscle cells. Comparison of stimulation by angiotensin II and endothelin. Hypertension. 1990 Jan;15(1):84–88. doi: 10.1161/01.hyp.15.1.84. [DOI] [PubMed] [Google Scholar]
- Tallant E. A., Diz D. I., Khosla M. C., Ferrario C. M. Identification and regulation of angiotensin II receptor subtypes on NG108-15 cells. Hypertension. 1991 Jun;17(6 Pt 2):1135–1143. doi: 10.1161/01.hyp.17.6.1135. [DOI] [PubMed] [Google Scholar]
- Tallant E. A., Jaiswal N., Diz D. I., Ferrario C. M. Human astrocytes contain two distinct angiotensin receptor subtypes. Hypertension. 1991 Jul;18(1):32–39. doi: 10.1161/01.hyp.18.1.32. [DOI] [PubMed] [Google Scholar]
- Timmermans P. B., Wong P. C., Chiu A. T., Herblin W. F. Nonpeptide angiotensin II receptor antagonists. Trends Pharmacol Sci. 1991 Feb;12(2):55–62. doi: 10.1016/0165-6147(91)90498-h. [DOI] [PubMed] [Google Scholar]
- Viswanathan M., Tsutsumi K., Correa F. M., Saavedra J. M. Changes in expression of angiotensin receptor subtypes in the rat aorta during development. Biochem Biophys Res Commun. 1991 Sep 30;179(3):1361–1367. doi: 10.1016/0006-291x(91)91723-p. [DOI] [PubMed] [Google Scholar]
- Whitebread S., Mele M., Kamber B., de Gasparo M. Preliminary biochemical characterization of two angiotensin II receptor subtypes. Biochem Biophys Res Commun. 1989 Aug 30;163(1):284–291. doi: 10.1016/0006-291x(89)92133-5. [DOI] [PubMed] [Google Scholar]
- Wright T. M., Rangan L. A., Shin H. S., Raben D. M. Kinetic analysis of 1,2-diacylglycerol mass levels in cultured fibroblasts. Comparison of stimulation by alpha-thrombin and epidermal growth factor. J Biol Chem. 1988 Jul 5;263(19):9374–9380. [PubMed] [Google Scholar]
