Skip to main content
Journal of Zhejiang University (Medical Sciences) logoLink to Journal of Zhejiang University (Medical Sciences)
. 2024 Aug 25;53(4):450–459. [Article in Chinese] doi: 10.3724/zdxbyxb-2023-0619

T细胞免疫在骨重建和骨再生中的研究进展

Advances on T cell immunity in bone remodeling and bone regeneration

胡 文慧 1,3, 邓 金霞 1, 苏 展鹏 1, 王 海兴 2, 林 思恩 1,2,✉,
Editors: 余 方, 沈 敏
PMCID: PMC11375490  PMID: 39183057

Abstract

骨重建和骨再生对于保持骨骼完整性和维持矿物质稳态至关重要。T淋巴细胞为适应性免疫的关键成员,通过产生一系列细胞因子和生长因子,在骨重建和骨再生过程中起着举足轻重的作用。在生理状态下,T淋巴细胞通过与间充质干细胞、成骨细胞、破骨细胞的交互作用参与骨稳态的维持;在病理状态下,T淋巴细胞通过与雌激素、糖皮质激素、甲状旁腺激素的协作参与不同类型骨质疏松的病理过程;在损伤后修复的骨折愈合过程中,T淋巴细胞在炎症血肿期、骨痂形成期和骨重建期发挥了不同的作用。因此,靶向T淋巴细胞成为调节骨稳态的潜在策略。本文综述了T细胞免疫参与骨重建和骨再生的研究进展及相关机制,以期为靶向T淋巴细胞调控骨重建和骨再生提供科学依据。

Keywords: 骨免疫学, T淋巴细胞, 适应性免疫, 骨重建, 骨再生, 骨质疏松, 骨折愈合, 综述


骨免疫学是近年来兴起的一个交叉学科,旨在探究骨骼系统与免疫系统之间的交互影响及调控。骨骼组织作为运动系统的一部分,亦是重要的免疫器官1。B淋巴细胞、T淋巴细胞(以下简称T细胞)等淋巴细胞的发育前期都是在骨髓内完成的,其中B淋巴细胞分化为浆细胞后还会返回骨髓,并产生大量抗体来发挥相应效应。骨组织细胞与免疫细胞共处骨髓微环境中,既相互联系又相互调控2,已有研究证实骨骼系统与免疫系统之间存在大量共通的分子通路和信号蛋白(趋化因子、细胞因子、激素、受体等)3-4。免疫微环境异常会干扰骨稳态的维持5,而当骨代谢异常时,免疫细胞的发育及免疫功能亦会受到影响2。此外,免疫细胞还广泛参与骨折或骨缺损之后的骨再生过程6-7,作为骨缺损部位的初始应答者修复脉管系统、启动信号级联,并招募细胞进行修复8。在骨愈合早期,免疫细胞是骨愈合初始炎症阶段信号的主要来源9。中性粒细胞分泌炎症因子(如IL-1、IL-6、TNF-α等),招募和激活其他免疫细胞(如单核细胞)和间充质干细胞进行修复10-11,如NK细胞分泌的CXCL7募集间充质干细胞,从而在骨愈合中发挥作用12。促炎巨噬细胞分泌的因子(如TNF-α)显著增加了间充质干细胞的附着和迁移,而抗炎巨噬细胞释放的因子(如IL-10)增强了间充质干细胞的成骨活性13。在骨愈合后期,T细胞、B淋巴细胞可通过分泌RANKL和OPG来招募破骨细胞并调节其分化和活性14-15。鉴于免疫细胞深度参与骨再生修复的各个阶段,深入了解骨免疫学对于理解骨重建和骨再生的调控机制至关重要。

既往骨免疫学研究主要关注巨噬细胞在内的急性炎症细胞与骨组织的交互调控,急性炎症反应在骨修复开始时至关重要,而适应性免疫反应在晚期骨再生期间具有重要意义16。T细胞免疫作为适应性免疫的核心要素17,其与成骨细胞和破骨细胞的交互影响近年来亦逐渐受到关注。T细胞来源于骨髓的造血干细胞,其前体从骨髓运送至胸腺并在胸腺发育成熟18。与其他细胞比较,T细胞是功能高度专门化的淋巴细胞,可识别和靶向处理感染病原体的细胞或癌症细胞17。本文对T细胞在生理、病理、骨折损伤等状况下参与骨重建和骨再生过程的机制进行综述,以便为靶向T细胞调控骨重建和骨再生提供依据。

1. T细胞在生理状态下与骨组织细胞的交互作用

骨稳态的维持主要涉及的三大支柱细胞:间充质干细胞、成骨细胞、破骨细胞。间充质干细胞是生理状态下成骨细胞的主要来源,也是骨再生修复中最重要的种子细胞。而骨稳态主要取决于成骨细胞对新骨的矿化沉积和破骨细胞对旧骨的分解吸收,成骨过程与破骨过程的平衡是维持正常骨量的关键环节。研究表明,T细胞与间充质干细胞、成骨细胞和破骨细胞之间皆存在密切的交互调控。

1.1. T细胞与间充质干细胞的交互作用

间充质干细胞具有分化为多种组织细胞(骨骼、软骨、脂肪组织、肌腱和肌肉)的能力,在骨组织的更新和再生中发挥重要作用19。间充质干细胞也有着强大的免疫调节能力,与包括T细胞在内的免疫细胞共享多种信号分子和通路,可彼此交互调控20。CD44与透明质酸的相互作用是T细胞与间充质干细胞之间共享的一种常见信号。活化的T细胞通过CD44-透明质酸相互作用从血液外渗到炎症部位21,而CD44表达水平升高可以增强间充质干细胞的黏附和运动能力22。研究显示,Th1细胞的标志性细胞因子γ干扰素可以直接影响间充质干细胞的迁移。将间充质干细胞(V54/2)暴露于γ干扰素后,趋化因子受体CCR1、CCR3和CXCR4表达上调,导致V54/2细胞对CCL5/RANTES、CCL28/MEC和CXCL12/基质细胞衍生因子1α的迁移反应显著增加23。γ干扰素介导的启动可能通过原位保留、脂肪组织衍生的间充质干细胞分化能力的衰减和表面相关分子的增强,以及调节细胞间和细胞与基质的相互作用,增强脂肪组织衍生的间充质干细胞的迁移能力24。另有研究显示,αβT细胞在生物材料植入后对间充质干细胞的招募和增殖发挥作用,缺乏αβT细胞的小鼠在钛植入物植入后局部促炎巨噬细胞明显增加,对间充质干细胞的招募则明显减少25

间充质干细胞对T细胞亦具有多种免疫调节效应。研究表明,骨髓间充质干细胞可以通过细胞间的直接接触或各种可溶性的媒介体,调节T细胞的激活和增殖26。TGF-β、肝细胞生长因子、吲哚胺2,3-双加氧酶和前列腺素E2是近年来发现的介导间充质干细胞调节T细胞的一些可溶性细胞因子27-28。研究证实,间充质干细胞能够促进Th2细胞和调节性T细胞的生成并增强其功能,同时抑制Th1细胞和Th17细胞的功能29;间充质干细胞与纯化的人CD4+ T细胞共培养会诱导调节性T细胞的产生30。此外,来自间充质干细胞的线粒体转移至CD4+ T细胞可以促进调节性T细胞的分化,并且接受线粒体转移的T细胞可以减轻移植物抗宿主病模型的炎症反应和组织损伤31

上述研究表明,T细胞与间充质干细胞之间的交互调控可能对维持骨组织免疫微环境的平衡起到重要作用。

1.2. T细胞与成骨细胞的交互作用

研究表明,在骨再生的早期阶段,成熟成骨细胞的整体减少与T细胞及其分泌因子的缺失存在紧密联系32。T细胞可通过直接与骨髓基质细胞和成骨细胞相互作用,或通过释放成骨细胞生长因子和Wnt配体来调节骨稳态33。体外实验也表明,抗原活化后的T细胞与间充质干细胞共培养后,碱性磷酸酶活性显著升高,并伴有基质矿化,提示活化的T细胞可诱导间充质干细胞成骨分化34。进一步研究表明,不同T细胞亚群及其分泌因子对成骨分化和骨再生有着迥异的影响34,其中促炎性T细胞(如Th17细胞)促成骨作用最强34。IL-17是由Th17细胞亚群所分泌的可调控成骨分化的细胞因子。研究表明,单独IL-17F即可促进成骨细胞标志物碱性磷酸酶的表达增加32。动物实验亦证实,IL-17治疗可促进体内骨形成及提升颅骨缺损修复效果35。此外,表达外核苷酸酶CD39(ATP→ADP/AMP)的调节性T细胞既可以通过与表达CD73(AMP→腺苷)的前成骨细胞共同作用,水解ATP生成腺苷,触发CD39-CD73-腺苷受体通路,促进间充质干细胞向成骨细胞分化36,也可以通过分泌TGF-β等细胞因子活化丝裂原活化蛋白激酶和Smad等效应蛋白,促进成骨细胞增殖和分化37。Wnt10b是近年来发现的另一种可调控成骨分化的T细胞分泌因子。研究发现,骨髓CD8+ T细胞在PTH治疗或者与调节性T细胞相互作用后,可分泌更多Wnt10b,激活Wnt信号通路并促进骨形成38-39。然而,作为CD4+ T细胞Th1亚群和CD8+ T细胞分泌的重要免疫调节因子,γ干扰素在体外对成骨细胞分化有着时期依赖性和剂量依赖性40-41。在成骨细胞分化早期,γ干扰素可下调Ⅰ型胶原α1的表达,抑制成骨分化;而在成骨分化中晚期,γ干扰素则可显著上调碱性磷酸酶和骨钙素的表达,有效促进成骨分化40。当γ干扰素与其他细胞因子共同作用时,会影响成骨分化的结局:γ干扰素与TNF-α在体外联合应用会抑制间充质干细胞的成骨分化42;γ干扰素与IL-17联合作用会削弱IL-17对成骨分化的促进作用41

成骨细胞也可以调控T细胞的功能。既往研究显示,成骨细胞可通过与T细胞相互作用来促进淋巴细胞的活化和增殖43-44,如成骨细胞可表达免疫相关分子(如MHC Ⅱ类、CD26等)45或是作为激活T细胞的辅助细胞发挥作用46。此外,在炎性状态下,成骨细胞可以分泌诸多激活的补体蛋白47、细胞因子和趋化因子,并表达相关受体,调节被激活的淋巴细胞48-49

1.3. T细胞与破骨细胞的交互作用

大量研究表明,T细胞与破骨细胞在信号转导和功能等多个层面存在深度的相互影响。破骨细胞起源于造血干细胞,是单核细胞谱系的前体细胞融合后形成的多核细胞37。早期体外实验表明,激活的T细胞可促进破骨细胞的生成50。体内研究同样提示活化的T细胞具备诱导破骨细胞分化的潜力。研究发现,卵巢切除术后小鼠体内T细胞产生了更多TNF-α,其通过TNF-α受体p55起作用,增强巨噬细胞集落刺激因子和RANKL对破骨细胞的诱导分化作用51;类风湿关节炎患者体内活化的T细胞可分泌过量RANKL,导致关节液中可溶性RANKL水平升高,增强破骨细胞的分化52。其中,Th17细胞在T细胞诱导破骨细胞分化的过程中发挥重要作用。Th17细胞可表达高水平的RANKL,与破骨前体细胞表面的RANK结合,诱导其发育为破骨细胞,从而导致骨质流失53;Th17细胞也可分泌IL-17、IL-21和γ干扰素等多种细胞因子,从而加剧牙周炎和类风湿关节炎的骨破坏37。其中,IL-17作为主要的促炎性细胞因子,可先作用于成骨细胞,刺激环氧合酶2介导的前列腺素E2合成及ODF基因表达,进而诱导破骨前体细胞分化为成熟的破骨细胞54。应用抗体中和IL-17可促进骨质疏松小鼠皮质骨修复,并在损伤局部增加骨形成标志物的表达,减弱氧化应激55。综上,Th17细胞与调节性T细胞的平衡对骨折的修复具有显著的调节作用。

T细胞亦可抑制破骨细胞的生成。首先,T细胞可通过CD40配体与CD40结合刺激B淋巴细胞,诱导B淋巴细胞分泌OPG,从而实现对破骨细胞分化的抑制15。其次,CD4+ T细胞和CD8+ T细胞耗竭会导致OPG产生减少,亦提示T细胞具有抗破骨细胞生成的特性56-58。此外,T细胞分泌的γ干扰素可直接作用于破骨细胞,抑制破骨细胞增殖和存活59。γ干扰素可通过干扰RANKL-RANK通路,迅速降解RANK衔接蛋白TNF受体相关因子6,进而抑制RANKL对转录因子NF-κB和c-Jun氨基末端激酶的激活14,抑制破骨细胞生成。研究亦证实γ干扰素可促进巨噬细胞分泌TNF-α和IL-1β等破骨细胞诱导因子,从而间接促进破骨细胞分化5。另有文献提示,γ干扰素在雌激素缺乏、感染和炎症的条件下,其净效应是刺激破骨细胞形成和骨吸收59。因此,γ干扰素对破骨细胞的作用具有复杂性,其体内效果依赖于γ干扰素的剂量水平及联合作用的细胞因子。调节性T细胞也可调控破骨分化。调节性T细胞对破骨细胞形成的抑制主要是通过CTLA4的直接细胞-细胞接触60-61。CTLA4与单核破骨细胞前体表面的B7-1和B7-2结合,抑制其向破骨细胞分化62

2. T细胞在骨质疏松病理状态下对骨稳态的调控作用

近年来,大量文献表明T细胞在各类骨质疏松中起着不可忽视的作用。例如,很多研究证实T细胞参与绝经后骨质疏松的发生发展5963-64。雌激素缺乏导致T细胞增殖和寿命延长,伴TNF-α产生增加,这是引起绝经后骨丢失的一个重要机制64。研究人员发现,T细胞缺乏的裸鼠在卵巢切除术后未表现出显著的骨丢失65。但另有研究显示,T细胞缺乏的小鼠相比野生型小鼠在卵巢切除术后丢失了相同比例的骨小梁,且骨髓中T细胞数及百分比在卵巢切除术后并未增加66-67。目前研究虽未得出一致结论,但都证实了T细胞在绝经后骨质疏松中扮演着重要角色。

T细胞亦参与了糖皮质激素诱发的继发性骨质疏松。研究表明,在T细胞缺乏的重度联合免疫缺陷小鼠中,通过糖皮质激素无法诱导继发性骨质疏松,但通过移植野生型小鼠的脾脏T细胞即重建T细胞免疫后,糖皮质激素可成功诱发骨丢失68。进一步研究表明,糖皮质激素导致外周T细胞数大幅减少,这些T细胞在骨髓中积累,并免受糖皮质激素诱导的细胞凋亡68。在糖皮质激素处理的小鼠骨髓中,这些T细胞表达高水平的RANKL,促进破骨细胞的形成和成熟,最终引发骨质疏松症68。这一研究提示了T细胞免疫在病理性骨稳态失衡中的作用。

T细胞还参与了PTH对骨质疏松的治疗作用。研究表明,在T细胞缺陷裸鼠中,PTH对骨形成和松质骨量的促进作用被大大减弱39。进一步研究发现,PTH的上述作用依赖于T细胞激活成骨细胞中的Wnt信号,骨髓中的CD8+ T细胞可产生大量Wnt配体Wnt10b,而在CD8+ T细胞缺陷小鼠中PTH无法显著促进Wnt10b的产生39。另有研究显示,在T细胞缺乏的情况下,PTH无法增加干细胞向成骨细胞谱系分化和增殖,并无法减轻成骨细胞的凋亡69。上述研究提示了T细胞免疫在PTH治疗骨质疏松中起到了重要作用。

3. T细胞在骨折愈合过程中促进骨再生的作用

T细胞作为适应性免疫的关键细胞,广泛参与调控骨再生过程中的各个阶段。在骨折愈合的早期和晚期都可以在骨痂部位检测到T细胞70。动物实验证实,T细胞缺陷的裸鼠OPG生成下降,破骨细胞生成增加并导致骨质疏松症15。临床研究证据亦表明,T细胞功能障碍与骨折愈合受损之间存在潜在联系。有研究通过单细胞RNA测序分析了来自股骨骨折不愈合患者的骨髓腔组织标本,发现不愈合标本组T细胞的比例较低71。进一步分析T细胞中的差异表达基因发现,不愈合组中与T细胞增殖和激活高度相关的核糖体基因表达较低72。上述研究均表明T细胞在整个骨折愈合阶段的作用是不容忽视的。

不同的T细胞亚群在骨折愈合过程中发挥的作用不同。调节性T细胞在骨折愈合中发挥正向作用。有临床研究显示,骨折延迟愈合患者中调节性T细胞功能下调73。γδT细胞在骨再生中也发挥着重要的正向作用。临床上观察到,双膦酸盐相关的颌骨坏死与人外周血γδT细胞亚群的缺乏有关74。动物研究显示,小鼠的股骨骨折可导致骨痂中γδT细胞的扩增,最终促进骨折愈合75。然而,有学者发现骨折血肿中富集的CD8+ T细胞会抑制人间充质干细胞的成骨分化76。研究还发现,小鼠截骨模型中CD8+ T细胞的耗竭导致内源性骨折再生增强,而CD8+ T细胞的重建损害了愈合过程77

3.1. T细胞在炎症血肿期的作用

众所周知,骨折愈合始于炎症血肿期,该时期对于触发愈合级联反应极为重要78。创伤导致骨骼内部和周围软组织血管破裂,伴白细胞、血浆渗出和血管舒张,引起血肿。大量免疫细胞(最初是中性粒细胞,随后是巨噬细胞和淋巴细胞)在血肿周围浸润,在清除细胞碎片的同时分泌大量细胞因子和趋化因子,募集包括间充质干细胞在内的多种前体细胞,从而促进愈伤组织的形成和骨骼连续性的恢复78-81

骨骼损伤处血肿的形成协调炎症和细胞过程,启动愈伤组织形成和骨骼连续性的恢复79。有证据表明,阻断这个初始阶段可能会导致整个骨愈合过程损害79。动物研究表明,骨折后3 d内血肿中即可见T细胞,并覆盖骨折部位周围的区域7075。临床研究也表明,在人骨折早期血肿中,T细胞的百分比增加,并在72 h内转变为激活状态82。研究人员还发现,肠道Th17细胞在炎症阶段会从肠道被招募至骨折部位以促进骨折愈合75。此外,在这个阶段,Rag1敲除小鼠由于IL-17F水平降低,骨生成减少32。但另有研究表明,Rag1敲除小鼠在第7天(炎症血肿期)愈伤组织中的骨骼比例显著增加83。上述研究均表明T细胞在骨折的炎症血肿期发挥了重要的作用。

3.2. T细胞在修复期的作用

T细胞不仅在炎症血肿期起作用,在损伤后的修复阶段也发挥重要作用,并与骨组织的再生进程有着密切联系84。在修复期,新生血管芽慢慢长入血肿区域,演变成愈伤组织。骨骼愈伤组织的萌生分为膜内骨化和软骨内骨化两种。膜内骨化发生在骨膜,骨髓间充质干细胞向成骨细胞定向分化,最终分化为骨细胞并形成编织骨7985。软骨内骨化发生于骨内膜和骨髓,先形成软骨痂组织,接着形成硬骨痂组织。骨髓间充质干细胞分化为软骨细胞并分泌大量软骨基质,随后软骨细胞会出现肥大分化,同时周围基质矿化演化成骨组织8185

动物实验表明,T细胞免疫可显著影响骨折修复的骨形成阶段。有学者比较了野生型小鼠和缺乏成熟T细胞小鼠的骨修复过程,发现在矿化早期,Rag1基因敲除小鼠在骨膜骨化区域表现出更多、更快的骨形成84。同时,有学者利用共聚焦显微镜观察发现,在软骨愈伤组织发育过程中,T细胞、B淋巴细胞从骨折部位撤出,并在愈伤组织新形成的骨骼附近大量聚集,提示T细胞参与了骨愈合的矿化阶段70。关于T细胞如何具体参与修复期的骨形成目前仍未阐明,但体外实验提供了一些线索。体外成骨实验显示,含CD4+ T细胞的培养基可促进人间充质细胞的成骨矿化能力,其中Runt相关转录因子2、骨钙素、骨唾液蛋白和碱性磷酸酶等基因的表达显著上调86。进一步研究发现,其机制在于CD4+ T细胞分泌的可溶性因子如IL-17A和IL-17F促进了间充质干细胞的成骨分化34

3.3. T细胞在重建期的作用

一般认为,骨痂改造期是骨愈合的最后阶段。这一阶段需降解编织骨,代之以成熟的板状骨87。愈伤组织重建依赖于破骨细胞的骨降解和成骨细胞的骨形成78。在重建阶段,由于新生血管的萌出,骨骼组织中有足够血供,因而能够募集细胞和营养物质78。新生的骨骼组织通过重建恢复至原始结构、形态和机械性能34。在此过程中,成骨与破骨的相互作用形成耦合循环,愈伤组织重新形成骨骼的原始皮质结构。同时,骨髓空间重建,形成了新的骨髓结构。在重建阶段末期,大量血管重构出现,新生血管床消退,血管流速回降到损伤前的水平88-89。研究表明,由γδT细胞、Th17细胞分泌的IL-17在骨折愈合组织的重建阶段发挥重要作用,其不仅促进修复组织中间充质干细胞增殖和成骨细胞分化来加速骨形成,而且可以上调RANKL的表达和分泌,促进破骨细胞增殖和活化90-91

4. 结语

T细胞及其亚群通过与间充质干细胞、成骨细胞及破骨细胞的多重相互作用,深度参与了骨稳态的维持以及骨折/骨缺损后的骨再生。但是,由于T细胞免疫的复杂性、T细胞亚群的多样性、骨重建和骨再生的高度动态性,T细胞在骨重建以及骨再生中的作用还有许多争议。

随着生物材料技术的迅猛发展,将生物材料与T细胞耦联将会是非常有应用前景的靶向骨再生策略。以各种生物材料为载体,通过递送小分子、蛋白质/多肽和核酸等治疗剂来促进T细胞增殖,可实现增强治疗效果、减少副作用的目标92。例如,有学者设计了通过多巴胺-聚乙二醇连接物修饰自身免疫性疾病相关抗原肽-MHC分子复合物的四氧化三铁纳米粒,可刺激调节性T细胞在体内外持续增殖,从而促进骨再生93;另有研究人员设计了募集IL-2/TGF-β和miR-10a的生物材料,可局部诱导初始T细胞分化为调节性T细胞,从而缓解骨质流失94;还有研究团队设计了一种适用于T细胞增殖和递送的聚乳酸-羟基乙酸共聚物/Ⅰ型胶原的复合支架,可用于组织工程化骨再造的研究95。我们相信,未来随着骨免疫学的进一步发展,T细胞免疫在骨重建及骨再生中的作用将会被更加充分地论证,亦会有更多的治疗手段以此为靶标应用于骨骼系统的疾病中。

Acknowledgments

研究得到国家自然科学基金(82272505,81874000)、广东省自然科学基金(2023A1515011040)和香港研究资助局优配研究金(14113723,14119124)资助

Acknowledgments

This work was supported by the National Natural Science Foundation of China (82272505, 81874000), Natural Science Foundation of Guangdong Province (2023A1515011040), and Hong Kong Research Grants Council (RGC) General Research Fund (14113723, 14119124)

[缩略语]

肿瘤坏死因子(tumor necrosis factor,TNF);CXC趋化因子配体(chemokine C-X-C motif ligand,CXCL);核因子κB(nuclear factor κB,NF-κB);NF-κB受体活化因子(receptor activator of NF-κB,RANK);RANK配体(RANK ligand,RANKL);护骨因子(osteoproteger,OPG);分化抗原(cluster of differentiation,CD);辅助性T细胞(T helper cell,Th细胞);CC趋化因子受体(chemokine CC-motif receptor,CCR);CXC趋化因子受体(chemokine C-X-C motif receptor,CXCR);CC趋化因子配体(chemokine CC-motif ligand,CCL);转化生长因子(transforming growth factor,TGF);腺苷三磷酸(adenosine triphosphate,ATP);腺苷二磷酸(adenosine diphosphate,ADP);腺苷一磷酸(adenosine monophosphate,AMP);甲状旁腺激素(parathyroid hormone,PTH);主要组织相容性复合体(major histocompatibility complex,MHC);破骨细胞分化因子(osteoclast differentiation factor,ODF);细胞毒性T淋巴细胞相关抗原(cytotoxic T-lymphocyte-associated antigen,CTLA);重组激活基因(recombination activating gene,RAG)

利益冲突声明

所有作者均声明不存在利益冲突

Conflict of Interests

The authors declare that there is no conflict of interests

参考文献(References)

  • 1.OKAMOTO K, TAKAYANAGI H. Osteoimmunology[J]. Cold Spring Harb Perspect Med, 2019, 9(1): a031245. 10.1101/cshperspect.a031245 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.TSUKASAKI M, TAKAYANAGI H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease[J]. Nat Rev Immunol, 2019, 19(10): 626-642. 10.1038/s41577-019-0178-8 [DOI] [PubMed] [Google Scholar]
  • 3.OKAMOTO K, NAKASHIMA T, SHINOHARA M, et al. Osteoimmunology: the conceptual framework unifying the immune and skeletal systems[J]. Physiol Rev, 2017, 97(4): 1295-1349. 10.1152/physrev.00036.2016 [DOI] [PubMed] [Google Scholar]
  • 4.TAKAYANAGI H. Osteoimmunology and the effects of the immune system on bone[J]. Nat Rev Rheumatol, 2009, 5(12): 667-676. 10.1038/nrrheum.2009.217 [DOI] [PubMed] [Google Scholar]
  • 5.WANG H, LIN S, FENG L, et al. Low-dose staphylo-coccal enterotoxin C2 mutant maintains bone homeo-stasis via regulating crosstalk between bone formation and host T-cell effector immunity[J/OL]. Adv Sci (Weinh), 2023, 10(28): e2300989. 10.1002/advs.202300989 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.TAKAYANAGI H. Osteoimmunology: shared mecha-nisms and crosstalk between the immune and bone systems[J]. Nat Rev Immunol, 2007, 7(4): 292-304. 10.1038/nri2062 [DOI] [PubMed] [Google Scholar]
  • 7.EL-JAWHARI J J, JONES E, GIANNOUDIS P V. The roles of immune cells in bone healing; what we know, do not know and future perspectives[J]. Injury, 2016, 47(11): 2399-2406. 10.1016/j.injury.2016.10.008 [DOI] [PubMed] [Google Scholar]
  • 8.BAHT G S, VI L, ALMAN B A. The role of the immune cells in fracture healing[J]. Curr Osteoporos Rep, 2018, 16(2): 138-145. 10.1007/s11914-018-0423-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.KOLAR P, SCHMIDT-BLEEK K, SCHELL H, et al. The early fracture hematoma and its potential role in fracture healing[J]. Tissue Eng Part B Rev, 2010, 16(4): 427-434. 10.1089/ten.teb.2009.0687 [DOI] [PubMed] [Google Scholar]
  • 10.KOVTUN A, BERGDOLT S, WIEGNER R, et al. The crucial role of neutrophil granulocytes in bone fracture healing[J]. Eur Cell Mater, 2016, 32: 152-162. 10.22203/ecm.v032a10 [DOI] [PubMed] [Google Scholar]
  • 11.SCAPINI P, LAUDANNA C, PINARDI C, et al. Neutro-phils produce biologically active macrophage inflam-matory protein-3alpha (MIP-3alpha)/CCL20 and MIP-3beta/CCL19[J]. Eur J Immunol, 2001, 31(7): 1981-1988. [DOI] [PubMed] [Google Scholar]
  • 12.ALMEIDA C R, CAIRES H R, VASCONCELOS D P, et al. NAP-2 secreted by human NK cells can stimulate mesenchymal stem/stromal cell recruitment[J]. Stem Cell Reports, 2016, 6(4): 466-473. 10.1016/j.stemcr.2016.02.012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.VALLÉS G, BENSIAMAR F, MAESTRO-PARAMIO L, et al. Influence of inflammatory conditions provided by macrophages on osteogenic ability of mesenchymal stem cells[J]. Stem Cell Res Ther, 2020, 11(1): 57. 10.1186/s13287-020-1578-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.TAKAYANAGI H, OGASAWARA K, HIDA S, et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma[J]. Nature, 2000, 408(6812): 600-605. 10.1038/35046102 [DOI] [PubMed] [Google Scholar]
  • 15.LI Y, TORALDO G, LI A, et al. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo [J]. Blood, 2007, 109(9): 3839-3848. 10.1182/blood-2006-07-037994 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.YANG N, LIU Y. The role of the immune microenvi-ronment in bone regeneration[J]. Int J Med Sci, 2021, 18(16): 3697-3707. 10.7150/ijms.61080 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.BROERE F, VAN EDEN W. T cell subsets and T cell-mediated immunity[M]//PARNHAM M J, NIJKAMP F P, ROSSI A G. Nijkamp and Parnham’s principles of immunopharmacology. Cham: Springer, 2019: 23-35. 10.1007/978-3-030-10811-3_3 [DOI] [Google Scholar]
  • 18.BHANDOOLA A, SAMBANDAM A. From stem cell to T cell: one route or many?[J]. Nat Rev Immunol, 2006, 6(2): 117-126. 10.1038/nri1778 [DOI] [PubMed] [Google Scholar]
  • 19.LIN W, XU L, ZWINGENBERGER S, et al. Mesen-chymal stem cells homing to improve bone healing[J]. J Orthop Translat, 2017, 9: 19-27. 10.1016/j.jot.2017.03.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.SHI Y, SU J, ROBERTS A I, et al. How mesenchymal stem cells interact with tissue immune responses[J]. Trends Immunol, 2012, 33(3): 136-143. 10.1016/j.it.2011.11.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.DEGRENDELE H C, ESTESS P, SIEGELMAN M H. Requirement for CD44 in activated T cell extrava-sation into an inflammatory site[J]. Science, 1997, 278(5338): 672-675. 10.1126/science.278.5338.672 [DOI] [PubMed] [Google Scholar]
  • 22.BIAN X H, ZHOU G Y, WANG L N, et al. The role of CD44-hyaluronic acid interaction in exogenous mesen-chymal stem cells homing to rat remnant kidney[J]. Kidney Blood Press Res, 2013, 38(1): 11-20. 10.1159/000355749 [DOI] [PubMed] [Google Scholar]
  • 23.HEMEDA H, JAKOB M, LUDWIG A K, et al. Interferon-gamma and tumor necrosis factor-alpha differentially affect cytokine expression and migration properties of mesenchymal stem cells[J]. Stem Cells Dev, 2010, 19(5): 693-706. 10.1089/scd.2009.0365 [DOI] [PubMed] [Google Scholar]
  • 24.ANDREEVA E R, UDARTSEVA O O, ZHIDKOVA O V, et al. IFN-gamma priming of adipose-derived stromal cells at “physiological” hypoxia[J]. J Cell Physiol, 2018, 233(2): 1535-1547. 10.1002/jcp.26046 [DOI] [PubMed] [Google Scholar]
  • 25.AVERY D, MORANDINI L, GABRIEC M, et al. Contri-bution of αβ T cells to macrophage polarization and MSC recruitment and proliferation on titanium implants[J]. Acta Biomater, 2023, 169: 605-624. 10.1016/j.actbio.2023.07.052 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.DUFFY M M, RITTER T, CEREDIG R, et al. Mesen-chymal stem cell effects on T-cell effector pathways[J]. Stem Cell Res Ther, 2011, 2(4): 34. 10.1186/scrt75 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.AGGARWAL S, PITTENGER M F. Human mesen-chymal stem cells modulate allogeneic immune cell responses[J]. Blood, 2005, 105(4): 1815-1822. 10.1182/blood-2004-04-1559 [DOI] [PubMed] [Google Scholar]
  • 28.DI NICOLA M, CARLO-STELLA C, MAGNI M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli[J]. Blood, 2002, 99(10): 3838-3843. 10.1182/blood.v99.10.3838 [DOI] [PubMed] [Google Scholar]
  • 29.MÜLLER L, TUNGER A, WOBUS M, et al. Immuno-modulatory properties of mesenchymal stromal cells: an update[J]. Front Cell Dev Biol, 2021, 9: 637725. 10.3389/fcell.2021.637725 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.AZEVEDO R I, MINSKAIA E, FERNANDES-PLATZGUMMER A, et al. Mesenchymal stromal cells induce regulatory T cells via epigenetic conversion of human conventional CD4 T cells in vitro [J]. Stem Cells, 2020, 38(8): 1007-1019. 10.1002/stem.3185 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.COURT A C, LE-GATT A, LUZ-CRAWFORD P, et al. Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response[J/OL]. EMBO Rep, 2020, 21(2): e48052. 10.15252/embr.201948052 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.NAM D, MAU E, WANG Y, et al. T-lymphocytes enable osteoblast maturation via IL-17F during the early phase of fracture repair[J/OL]. PLoS One, 2012, 7(6): e40044. 10.1371/journal.pone.0040044 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.PACIFICI R. T cells: critical bone regulators in health and disease[J]. Bone, 2010, 47(3): 461-471. 10.1016/j.bone.2010.04.611 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.CROES M, ÖNER F C, VAN NEERVEN D, et al. Proinflammatory T cells and IL-17 stimulate osteoblast differentiation[J]. Bone, 2016, 84: 262-270. 10.1016/j.bone.2016.01.010 [DOI] [PubMed] [Google Scholar]
  • 35.KIM H J, SEO S J, KIM J Y, et al. IL-17 promotes osteoblast differentiation, bone regeneration, and remod-eling in mice[J]. Biochem Biophys Res Commun, 2020, 524(4): 1044-1050. 10.1016/j.bbrc.2020.02.054 [DOI] [PubMed] [Google Scholar]
  • 36.LEI H, SCHMIDT-BLEEK K, DIENELT A, et al. Regulatory T cell-mediated anti-inflammatory effects promote successful tissue repair in both indirect and direct manners[J]. Front Pharmacol, 2015, 6: 184. 10.3389/fphar.2015.00184 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.ZHU L, HUA F, DING W, et al. The correlation between the Th17/Treg cell balance and bone health[J]. Immun Ageing, 2020, 17: 30. 10.1186/s12979-020-00202-z [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.TYAGI A M, YU M, DARBY T M, et al. The microbial metabolite butyrate stimulates bone formation via T regulatory cell-mediated regulation of Wnt10b expression[J]. Immunity, 2018, 49(6): 1116-1131.e7. 10.1016/j.immuni.2018.10.013 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.TERAUCHI M, LI J Y, BEDI B, et al. T lymphocytes amplify the anabolic activity of parathyroid hormone through Wnt10b signaling[J]. Cell Metab, 2009, 10(3): 229-240. 10.1016/j.cmet.2009.07.010 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.LAI J H, HSU Y P, YANG C H, et al. Interferon-gamma regulates the levels of bone formation effectors in a stage-dependent manner[J]. Mol Biol Rep, 2022, 49(12): 12007-12015. 10.1007/s11033-022-07993-y [DOI] [PubMed] [Google Scholar]
  • 41.WANG Z, TAN J, LEI L, et al. The positive effects of secreting cytokines IL-17 and IFN-γ on the early-stage differentiation and negative effects on the calcification of primary osteoblasts in vitro [J]. Int Immunophar-macol, 2018, 57: 1-10. 10.1016/j.intimp.2018.02.002 [DOI] [PubMed] [Google Scholar]
  • 42.WANG L, ZHAO Y, LIU Y, et al. IFN-γ and TNF-α synergistically induce mesenchymal stem cell impair-ment and tumorigenesis via NFκB signaling[J]. Stem Cells, 2013, 31(7): 1383-1395. 10.1002/stem.1388 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.LISIGNOLI G, TONEGUZZI S, PIACENTINI A, et al. Recruitment and proliferation of T lymphocytes is supported by IFNgamma- and TNFalpha-activated human osteoblasts: involvement of CD54 (ICAM-1) and CD106 (VCAM-1) adhesion molecules and CXCR3 chemokine receptor[J]. J Cell Physiol, 2004, 198(3): 388-398. 10.1002/jcp.10427 [DOI] [PubMed] [Google Scholar]
  • 44.SKJØDT H, MØLLER T, FREIESLEBEN S F. Human osteoblast-like cells expressing MHC class II deter-minants stimulate allogeneic and autologous peripheral blood mononuclear cells and function as antigen-pre-senting cells[J]. Immunology, 1989, 68(3): 416-420. [PMC free article] [PubMed] [Google Scholar]
  • 45.REYES-BOTELLA C, MONTES M J, VALLECILLO-CAPILLA M F, et al. Expression of molecules involved in antigen presentation and T cell activation (HLA-DR, CD80, CD86, CD44 and CD54) by cultured human osteoblasts[J]. J Periodontol, 2000, 71(4): 614-617. 10.1902/jop.2000.71.4.614 [DOI] [PubMed] [Google Scholar]
  • 46.STANLEY K T, VANDORT C, MOTYL C, et al. Immu-nocompetent properties of human osteoblasts: inter-actions with T lymphocytes[J]. J Bone Miner Res, 2006, 21(1): 29-36. 10.1359/jbmr.051004 [DOI] [PubMed] [Google Scholar]
  • 47.SCHOENGRAF P, LAMBRIS J D, RECKNAGEL S, et al. Does complement play a role in bone development and regeneration?[J]. Immunobiology, 2013, 218(1): 1-9. 10.1016/j.imbio.2012.01.020 [DOI] [PubMed] [Google Scholar]
  • 48.LISIGNOLI G, TONEGUZZI S, PIACENTINI A, et al. Human osteoblasts express functional CXC chemokine receptors 3 and 5: activation by their ligands, CXCL10 and CXCL13, significantly induces alkaline phosphatase and beta-N-acetylhexosaminidase release[J]. J Cell Physiol, 2003, 194(1): 71-79. 10.1002/jcp.10188 [DOI] [PubMed] [Google Scholar]
  • 49.RIFAS L, ARACKAL S, WEITZMANN M N. Inflam-matory T cells rapidly induce differentiation of human bone marrow stromal cells into mature osteoblasts[J]. J Cell Biochem, 2003, 88(4): 650-659. 10.1002/jcb.10436 [DOI] [PubMed] [Google Scholar]
  • 50.HORWOOD N J, KARTSOGIANNIS V, QUINN J M, et al. Activated T lymphocytes support osteoclast for-mation in vitro [J]. Biochem Biophys Res Commun, 1999, 265(1): 144-150. 10.1006/bbrc.1999.1623 [DOI] [PubMed] [Google Scholar]
  • 51.CENCI S, WEITZMANN M N, ROGGIA C, et al. Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha[J]. J Clin Invest, 2000, 106(10): 1229-1237. 10.1172/jci11066 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.KOTAKE S, UDAGAWA N, HAKODA M, et al. Acti-vated human T cells directly induce osteoclastogenesis from human monocytes: possible role of T cells in bone destruction in rheumatoid arthritis patients[J]. Arthritis Rheum, 2001, 44(5): 1003-1012. [DOI] [PubMed] [Google Scholar]
  • 53.XIE G, HUANG C, JIANG S, et al. Smoking and osteo-immunology: understanding the interplay between bone metabolism and immune homeostasis[J]. J Orthop Translat, 2024, 46: 33-45. 10.1016/j.jot.2024.04.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.ARRON J R, CHOI Y. Bone versus immune system[J]. Nature, 2000, 408(6812): 535-536. 10.1038/35046196 [DOI] [PubMed] [Google Scholar]
  • 55.DIXIT M, SINGH K B, PRAKASH R, et al. Functional block of IL-17 cytokine promotes bone healing by aug-menting FOXO1 and ATF4 activity in cortical bone defect model[J]. Osteoporos Int, 2017, 28(7): 2207-2220. 10.1007/s00198-017-4012-5 [DOI] [PubMed] [Google Scholar]
  • 56.CHOI Y, WOO K M, KO S H, et al. Osteoclasto-genesis is enhanced by activated B cells but suppressed by activated CD8(+) T cells[J]. Eur J Immunol, 2001, 31(7): 2179-2188. [DOI] [PubMed] [Google Scholar]
  • 57.GRCEVIĆ D, LEE S K, MARUSIĆ A, et al. Depletion of CD4 and CD8 T lymphocytes in mice in vivo enhances 1, 25-dihydroxyvitamin D3-stimulated osteoclast-like cell formation in vitro by a mechanism that is dependent on prostaglandin synthesis[J]. J Immunol, 2000, 165(8): 4231-4238. 10.4049/jimmunol.165.8.4231 [DOI] [PubMed] [Google Scholar]
  • 58.TORALDO G, ROGGIA C, QIAN W P, et al. IL-7 induces bone loss in vivo by induction of receptor activator of nuclear factor kappa B ligand and tumor necrosis factor alpha from T cells[J]. Proc Natl Acad Sci U S A, 2003, 100(1): 125-130. 10.1073/pnas.0136772100 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.GAO Y, GRASSI F, RYAN M R, et al. IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation[J]. J Clin Invest, 2007, 117(1): 122-132. 10.1172/jci30074 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.ZAISS M M, AXMANN R, ZWERINA J, et al. Treg cells suppress osteoclast formation: a new link between the immune system and bone[J]. Arthritis Rheum, 2007, 56(12): 4104-4112. 10.1002/art.23138 [DOI] [PubMed] [Google Scholar]
  • 61.ZAISS M M, SARTER K, HESS A, et al. Increased bone density and resistance to ovariectomy-induced bone loss in FoxP3-transgenic mice based on impaired osteoclast differentiation[J]. Arthritis Rheum, 2010, 62(8): 2328-2338. 10.1002/art.27535 [DOI] [PubMed] [Google Scholar]
  • 62.ZAISS M M, AXMANN R, ZWERINA J, et al. Treg cells suppress osteoclast formation: a new link between the immune system and bone[J]. Arthritis Rheum, 2007, 56(12): 4104-4112. 10.1002/art.23138 [DOI] [PubMed] [Google Scholar]
  • 63.CENCI S, TORALDO G, WEITZMANN M N, et al. Estrogen deficiency induces bone loss by increasing T cell proliferation and lifespan through IFN-gamma-induced class Ⅱ transactivator[J]. Proc Natl Acad Sci U S A, 2003, 100(18): 10405-10410. 10.1073/pnas.1533207100 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.GAO Y, QIAN W P, DARK K, et al. Estrogen prevents bone loss through transforming growth factor beta signaling in T cells[J]. Proc Natl Acad Sci U S A, 2004, 101(47): 16618-16623. 10.1073/pnas.0404888101 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.ROGGIA C, GAO Y, CENCI S, et al. Up-regulation of TNF-producing T cells in the bone marrow: a key mech-anism by which estrogen deficiency induces bone loss in vivo [J]. Proc Natl Acad Sci U S A, 2001, 98(24): 13960-13965. 10.1073/pnas.251534698 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.LEE S K, KADONO Y, OKADA F, et al. T lymphocyte-deficient mice lose trabecular bone mass with ovari-ectomy[J]. J Bone Miner Res, 2006, 21(11): 1704-1712. 10.1359/jbmr.060726 [DOI] [PubMed] [Google Scholar]
  • 67.AN J H, PARK H, SONG J A, et al. Transplantation of human umbilical cord blood-derived mesenchymal stem cells or their conditioned medium prevents bone loss in ovariectomized nude mice[J]. Tissue Eng Part A, 2013, 19(5-6): 685-696. 10.1089/ten.tea.2012.0047 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.SONG L, CAO L, LIU R, et al. The critical role of T cells in glucocorticoid-induced osteoporosis[J]. Cell Death Dis, 2020, 12(1): 45. 10.1038/s41419-020-03249-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.PACIFICI R. T cells, osteoblasts, and osteocytes: inter-acting lineages key for the bone anabolic and catabolic activities of parathyroid hormone[J]. Ann N Y Acad Sci, 2016, 1364(1): 11-24. 10.1111/nyas.12969 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.KÖNNECKE I, SERRA A, KHASSAWNA T EL, et al. T and B cells participate in bone repair by infiltrating the fracture callus in a two-wave fashion[J]. Bone, 2014, 64: 155-165. 10.1016/j.bone.2014.03.052 [DOI] [PubMed] [Google Scholar]
  • 71.AVIN K G, DOMINGUEZ J M 2 ND, CHEN N X, et al. Single-cell RNAseq provides insight into altered immune cell populations in human fracture nonunions[J]. J Orthop Res, 2023, 41(5): 1060-1069. 10.1002/jor.25452 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.WANG Y, ZHAN D, WANG L. Ribosomal proteins are blood biomarkers and associated with CD4+ T cell activation in Alzheimer’s disease: a study based on machine learning strategies and scRNA-Seq data vali-dation[J]. Am J Transl Res, 2023, 15(4): 2498-2514. [PMC free article] [PubMed] [Google Scholar]
  • 73.JIANG H, TI Y, WANG Y, et al. Downregulation of regulatory T cell function in patients with delayed fracture healing[J]. Clin Exp Pharmacol Physiol, 2018, 45(5): 430-436. 10.1111/1440-1681.12902 [DOI] [PubMed] [Google Scholar]
  • 74.KALYAN S. It may seem inflammatory, but some T cells are innately healing to the bone[J]. J Bone Miner Res, 2016, 31(11): 1997-2000. 10.1002/jbmr.2875 [DOI] [PubMed] [Google Scholar]
  • 75.DAR H Y, PERRIEN D S, PAL S, et al. Callus γδ T cells and microbe-induced intestinal Th17 cells improve fracture healing in mice[J/OL]. J Clin Invest, 2023, 133(8): e166577. 10.1172/jci166577 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.LIU Y, WANG L, KIKUIRI T, et al. Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α[J]. Nat Med, 2011, 17(12): 1594-1601. 10.1038/nm.2542 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.REINKE S, GEISSLER S, TAYLOR W R, et al. Ter-minally differentiated CD8+ T cells negatively affect bone regeneration in humans[J]. Sci Transl Med, 2013, 5(177): 177ra36. 10.1126/scitranslmed.3004754 [DOI] [PubMed] [Google Scholar]
  • 78.CLAES L, RECKNAGEL S, IGNATIUS A. Fracture healing under healthy and inflammatory conditions[J]. Nat Rev Rheumatol, 2012, 8(3): 133-143. 10.1038/nrrheum.2012.1 [DOI] [PubMed] [Google Scholar]
  • 79.WALTERS G, POUNTOS I, GIANNOUDIS P V. The cytokines and micro-environment of fracture haema-toma: current evidence[J/OL]. J Tissue Eng Regen Med, 2018, 12(3): e1662-e1677. 10.1002/term.2593 [DOI] [PubMed] [Google Scholar]
  • 80.JULIER Z, PARK A J, BRIQUEZ P S, et al. Promoting tissue regeneration by modulating the immune system[J]. Acta Biomater, 2017, 53: 13-28. 10.1016/j.actbio.2017.01.056 [DOI] [PubMed] [Google Scholar]
  • 81.MARUYAMA M, RHEE C, UTSUNOMIYA T, et al. Modulation of the inflammatory response and bone healing[J]. Front Endocrinol (Lausanne), 2020, 11: 386. 10.3389/fendo.2020.00386 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.HOFF P, GABER T, STREHL C, et al. Immunological characterization of the early human fracture hematoma[J]. Immunol Res, 2016, 64(5-6): 1195-1206. 10.1007/s12026-016-8868-9 [DOI] [PubMed] [Google Scholar]
  • 83.TOBEN D, SCHROEDER I, KHASSAWNA T EL, et al. Fracture healing is accelerated in the absence of the adaptive immune system[J]. J Bone Miner Res, 2011, 26(1): 113-124. 10.1002/jbmr.185 [DOI] [PubMed] [Google Scholar]
  • 84.KHASSAWNA T EL, SERRA A, BUCHER C H, et al. T lymphocytes influence the mineralization process of bone[J]. Front Immunol, 2017, 8: 562. 10.3389/fimmu.2017.00562 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.KENKRE J S, BASSETT J. The bone remodelling cycle[J]. Ann Clin Biochem, 2018, 55(3): 308-327. 10.1177/0004563218759371 [DOI] [PubMed] [Google Scholar]
  • 86.GRASSI F, CATTINI L, GAMBARI L, et al. T cell subsets differently regulate osteogenic differentiation of human mesenchymal stromal cells in vitro [J]. J Tissue Eng Regen Med, 2016, 10(4): 305-314. 10.1002/term.1727 [DOI] [PubMed] [Google Scholar]
  • 87.BAHNEY C S, ZONDERVAN R L, ALLISON P, et al. Cellular biology of fracture healing[J]. J Orthop Res, 2019, 37(1): 35-50. 10.1002/jor.24170 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.HOLSTEIN J H, KARABIN-KEHL B, SCHEUER C, et al. Endostatin inhibits Callus remodeling during fracture healing in mice[J]. J Orthop Res, 2013, 31(10): 1579-1584. 10.1002/jor.22401 [DOI] [PubMed] [Google Scholar]
  • 89.MELNYK M, HENKE T, CLAES L, et al. Revascular-isation during fracture healing with soft tissue injury[J]. Arch Orthop Trauma Surg, 2008, 128(10): 1159-1165. 10.1007/s00402-007-0543-0 [DOI] [PubMed] [Google Scholar]
  • 90.HUANG H, KIM H J, CHANG E J, et al. IL-17 stim-ulates the proliferation and differentiation of human mesenchymal stem cells: implications for bone remod-eling[J]. Cell Death Differ, 2009, 16(10): 1332-1343. 10.1038/cdd.2009.74 [DOI] [PubMed] [Google Scholar]
  • 91.ONO T, OKAMOTO K, NAKASHIMA T, et al. IL-17-producing γδT cells enhance bone regeneration[J]. Nat Commun, 2016, 7: 10928. 10.1038/ncomms10928 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.LIAO Z, ZHANG W, ZHENG H, et al. Leveraging biomaterials for enhancing T cell immunotherapy[J]. J Control Release, 2022, 344: 272-288. 10.1016/j.jconrel.2022.02.023 [DOI] [PubMed] [Google Scholar]
  • 93.SINGHA S, SHAO K, YANG Y, et al. Peptide-MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices[J]. Nat Nano-technol, 2017, 12(7): 701-710. 10.1038/nnano.2017.56 [DOI] [PubMed] [Google Scholar]
  • 94.LIU Z, CHEN X, ZHANG Z, et al. Nanofibrous spongy microspheres to distinctly release miRNA and growth factors to enrich regulatory T cells and rescue perio-dontal bone loss[J]. ACS Nano, 2018, 12(10): 9785-9799. 10.1021/acsnano.7b08976 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.朱慧勇, 王慧明, 吴求亮, 等. PLGA/Ⅰ型胶原复合支架用于组织工程化骨再造的研究[J]. 浙江大学学报(医学版), 2005, 34(3): 233-236. [DOI] [PubMed] [Google Scholar]; ZHU Huiyong, WANG Huiming, WU Qiuliang, et al. Tissue engineered bone reconstruction with modified PLGA/Type-Ⅰ collagen compound scaffold[J]. Journal of Zhejiang University (Medical Sciences), 2005, 34(3): 233-236. (in Chinese) [DOI] [PubMed] [Google Scholar]

Articles from Journal of Zhejiang University (Medical Sciences) are provided here courtesy of Zhejiang University Press

RESOURCES