Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Oct 1;303(Pt 1):61–68. doi: 10.1042/bj3030061

Oxidized mucus proteinase inhibitor: a fairly potent neutrophil elastase inhibitor.

C Boudier 1, J G Bieth 1
PMCID: PMC1137557  PMID: 7945266

Abstract

N-chlorosuccinimide oxidizes one of the methionine residues of mucus proteinase inhibitor with a second-order rate constant of 1.5 M-1.s-1. Cyanogen bromide cleavage and NH2-terminal sequencing show that the modified residue is methionine-73, the P'1 component of the inhibitor's active centre. Oxidation of the inhibitor decreases its neutrophil elastase inhibitory capacity but does not fully abolish it. The kinetic parameters describing the elastase-oxidized inhibitor interaction are: association rate constant kass. = 2.6 x 10(5) M-1.s-1, dissociation rate constant kdiss. = 2.9 x 10(-3) s-1 and equilibrium dissociation constant Ki = 1.1 x 10(-8) M. Comparison with the native inhibitor indicates that oxidation decreases kass. by a factor of 18.8 and increases kdiss. by a factor of 6.4, and therefore leads to a 120-fold increase in Ki. Yet, the oxidized inhibitor may still act as a potent elastase inhibitor in the upper respiratory tract where its concentration is 500-fold higher than Ki, i.e. where the elastase inhibition is pseudo-irreversible. Experiments in vitro with fibrous human lung elastin, the most important natural substrate of elastase, support this view: 1.35 microM elastase is fully inhibited by 5-6 microM oxidized inhibitor whether the enzyme-inhibitor complex is formed in the presence or absence of elastin and whether elastase is pre-adsorbed on elastin or not.

Full text

PDF
61

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beatty K., Bieth J., Travis J. Kinetics of association of serine proteinases with native and oxidized alpha-1-proteinase inhibitor and alpha-1-antichymotrypsin. J Biol Chem. 1980 May 10;255(9):3931–3934. [PubMed] [Google Scholar]
  2. Bieth J. G. In vivo significance of kinetic constants of protein proteinase inhibitors. Biochem Med. 1984 Dec;32(3):387–397. doi: 10.1016/0006-2944(84)90046-2. [DOI] [PubMed] [Google Scholar]
  3. Boudier C., Bieth J. G. Mucus proteinase inhibitor: a fast-acting inhibitor of leucocyte elastase. Biochim Biophys Acta. 1989 Mar 16;995(1):36–41. doi: 10.1016/0167-4838(89)90230-6. [DOI] [PubMed] [Google Scholar]
  4. Boudier C., Bieth J. G. The proteinase: mucus proteinase inhibitor binding stoichiometry. J Biol Chem. 1992 Mar 5;267(7):4370–4375. [PubMed] [Google Scholar]
  5. Boudier C., Holle C., Bieth J. G. Stimulation of the elastolytic activity of leukocyte elastase by leukocyte cathepsin G. J Biol Chem. 1981 Oct 25;256(20):10256–10258. [PubMed] [Google Scholar]
  6. Bruch M., Bieth J. G. Influence of elastin on the inhibition of leucocyte elastase by alpha 1-proteinase inhibitor and bronchial inhibitor. Potent inhibition of elastin-bound elastase by bronchial inhibitor. Biochem J. 1986 Aug 15;238(1):269–273. doi: 10.1042/bj2380269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Böhm B., Deutzmann R., Burkhardt H. Purification of a serine-proteinase inhibitor from human articular cartilage. Identity with the acid-stable proteinase inhibitor of mucous secretions. Biochem J. 1991 Feb 15;274(Pt 1):269–273. doi: 10.1042/bj2740269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carp H., Janoff A. Potential mediator of inflammation. Phagocyte-derived oxidants suppress the elastase-inhibitory capacity of alpha 1-proteinase inhibitor in vitro. J Clin Invest. 1980 Nov;66(5):987–995. doi: 10.1172/JCI109968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cha S. Tight-binding inhibitors-I. Kinetic behavior. Biochem Pharmacol. 1975 Dec 1;24(23):2177–2185. doi: 10.1016/0006-2952(75)90050-7. [DOI] [PubMed] [Google Scholar]
  10. Eisenberg S. P., Hale K. K., Heimdal P., Thompson R. C. Location of the protease-inhibitory region of secretory leukocyte protease inhibitor. J Biol Chem. 1990 May 15;265(14):7976–7981. [PubMed] [Google Scholar]
  11. Faller B., Mely Y., Gerard D., Bieth J. G. Heparin-induced conformational change and activation of mucus proteinase inhibitor. Biochemistry. 1992 Sep 8;31(35):8285–8290. doi: 10.1021/bi00150a023. [DOI] [PubMed] [Google Scholar]
  12. Gast A., Anderson W., Probst A., Nick H., Thompson R. C., Eisenberg S. P., Schnebli H. Pharmacokinetics and distribution of recombinant secretory leukocyte proteinase inhibitor in rats. Am Rev Respir Dis. 1990 Apr;141(4 Pt 1):889–894. doi: 10.1164/ajrccm/141.4_Pt_1.889. [DOI] [PubMed] [Google Scholar]
  13. Gauthier F., Fryksmark U., Ohlsson K., Bieth J. G. Kinetics of the inhibition of leukocyte elastase by the bronchial inhibitor. Biochim Biophys Acta. 1982 Jan 18;700(2):178–183. doi: 10.1016/0167-4838(82)90095-4. [DOI] [PubMed] [Google Scholar]
  14. Grütter M. G., Fendrich G., Huber R., Bode W. The 2.5 A X-ray crystal structure of the acid-stable proteinase inhibitor from human mucous secretions analysed in its complex with bovine alpha-chymotrypsin. EMBO J. 1988 Feb;7(2):345–351. doi: 10.1002/j.1460-2075.1988.tb02819.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Johnson D., Travis J. The oxidative inactivation of human alpha-1-proteinase inhibitor. Further evidence for methionine at the reactive center. J Biol Chem. 1979 May 25;254(10):4022–4026. [PubMed] [Google Scholar]
  16. Kramps J. A., Franken C., Dijkman J. H. ELISA for quantitative measurement of low-molecular-weight bronchial protease inhibitor in human sputum. Am Rev Respir Dis. 1984 Jun;129(6):959–963. doi: 10.1164/arrd.1984.129.6.959. [DOI] [PubMed] [Google Scholar]
  17. Kramps J. A., Te Boekhorst A. H., Fransen J. A., Ginsel L. A., Dijkman J. H. Antileukoprotease is associated with elastin fibers in the extracellular matrix of the human lung. An immunoelectron microscopic study. Am Rev Respir Dis. 1989 Aug;140(2):471–476. doi: 10.1164/ajrccm/140.2.471. [DOI] [PubMed] [Google Scholar]
  18. Kramps J. A., van Twisk C., Appelhans H., Meckelein B., Nikiforov T., Dijkman J. H. Proteinase inhibitory activities of antileukoprotease are represented by its second COOH-terminal domain. Biochim Biophys Acta. 1990 Apr 19;1038(2):178–185. doi: 10.1016/0167-4838(90)90202-q. [DOI] [PubMed] [Google Scholar]
  19. Laskowski M., Jr, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem. 1980;49:593–626. doi: 10.1146/annurev.bi.49.070180.003113. [DOI] [PubMed] [Google Scholar]
  20. Lawrence D. A., Loskutoff D. J. Inactivation of plasminogen activator inhibitor by oxidants. Biochemistry. 1986 Oct 21;25(21):6351–6355. doi: 10.1021/bi00369a001. [DOI] [PubMed] [Google Scholar]
  21. Lucey E. C., Stone P. J., Ciccolella D. E., Breuer R., Christensen T. G., Thompson R. C., Snider G. L. Recombinant human secretory leukocyte-protease inhibitor: in vitro properties, and amelioration of human neutrophil elastase-induced emphysema and secretory cell metaplasia in the hamster. J Lab Clin Med. 1990 Feb;115(2):224–232. [PubMed] [Google Scholar]
  22. Martodam R. R., Baugh R. J., Twumasi D. Y., Liener I. E. A rapid procedure for the large scale purification of elastase and cathepsin G from human sputum. Prep Biochem. 1979;9(1):15–31. doi: 10.1080/00327487908061669. [DOI] [PubMed] [Google Scholar]
  23. Matheson N. R., Wong P. S., Schuyler M., Travis J. Interaction of human alpha-1-proteinase inhibitor with neutrophil myeloperoxidase. Biochemistry. 1981 Jan 20;20(2):331–336. doi: 10.1021/bi00505a016. [DOI] [PubMed] [Google Scholar]
  24. McElvaney N. G., Nakamura H., Birrer P., Hébert C. A., Wong W. L., Alphonso M., Baker J. B., Catalano M. A., Crystal R. G. Modulation of airway inflammation in cystic fibrosis. In vivo suppression of interleukin-8 levels on the respiratory epithelial surface by aerosolization of recombinant secretory leukoprotease inhibitor. J Clin Invest. 1992 Oct;90(4):1296–1301. doi: 10.1172/JCI115994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Morrison J. F., Walsh C. T. The behavior and significance of slow-binding enzyme inhibitors. Adv Enzymol Relat Areas Mol Biol. 1988;61:201–301. doi: 10.1002/9780470123072.ch5. [DOI] [PubMed] [Google Scholar]
  26. Ohlsson K., Tegner H., Akesson U. Isolation and partial characterization of a low molecular weight acid stable protease inhibitor from human bronchial secretion. Hoppe Seylers Z Physiol Chem. 1977 May;358(5):583–589. doi: 10.1515/bchm2.1977.358.1.583. [DOI] [PubMed] [Google Scholar]
  27. Ohlsson M., Rosengren M., Tegner H., Ohlsson K. Quantification of granulocyte elastase inhibitors in human mixed saliva and in pure parotid secretion. Hoppe Seylers Z Physiol Chem. 1983 Sep;364(9):1323–1328. doi: 10.1515/bchm2.1983.364.2.1323. [DOI] [PubMed] [Google Scholar]
  28. Padrines M., Bieth J. G. Elastin decreases the efficiency of neutrophil elastase inhibitors. Am J Respir Cell Mol Biol. 1991 Feb;4(2):187–193. doi: 10.1165/ajrcmb/4.2.187. [DOI] [PubMed] [Google Scholar]
  29. Padrines M., Schneider-Pozzer M., Bieth J. G. Inhibition of neutrophil elastase by alpha-1-proteinase inhibitor oxidized by activated neutrophils. Am Rev Respir Dis. 1989 Mar;139(3):783–790. doi: 10.1164/ajrccm/139.3.783. [DOI] [PubMed] [Google Scholar]
  30. Powers J. C., Boone R., Carroll D. L., Gupton B. F., Kam C. M., Nishino N., Sakamoto M., Tuhy P. M. Reaction of azapeptides with human leukocyte elastase and porcine pancreatic elastase. New inhibitors and active site titrants. J Biol Chem. 1984 Apr 10;259(7):4288–4294. [PubMed] [Google Scholar]
  31. Reilly C. F., Travis J. The degradation of human lung elastin by neutrophil proteinases. Biochim Biophys Acta. 1980 Jan 24;621(1):147–157. doi: 10.1016/0005-2795(80)90070-7. [DOI] [PubMed] [Google Scholar]
  32. Rice W. G., Weiss S. J. Regulation of proteolysis at the neutrophil-substrate interface by secretory leukoprotease inhibitor. Science. 1990 Jul 13;249(4965):178–181. doi: 10.1126/science.2371565. [DOI] [PubMed] [Google Scholar]
  33. Rudolphus A., Heinzel-Wieland R., Vincent V. A., Saunders D., Steffens G. J., Dijkman J. H., Kramps J. A. Oxidation-resistant variants of recombinant antileucoprotease are better inhibitors of human-neutrophil-elastase-induced emphysema in hamsters than natural recombinant antileucoprotease. Clin Sci (Lond) 1991 Dec;81(6):777–784. doi: 10.1042/cs0810777. [DOI] [PubMed] [Google Scholar]
  34. Rudolphus A., Kramps J. A., Dijkman J. H. Effect of human antileucoprotease on experimental emphysema. Eur Respir J. 1991 Jan;4(1):31–39. [PubMed] [Google Scholar]
  35. Schiessler H., Arnhold M., Ohlsson K., Fritz H. Inhibitors of acrosin and granulocyte proteinases from human genital tract secretions. Hoppe Seylers Z Physiol Chem. 1976 Sep;357(9):1251–1260. doi: 10.1515/bchm2.1976.357.2.1251. [DOI] [PubMed] [Google Scholar]
  36. Seemüller U., Arnhold M., Fritz H., Wiedenmann K., Machleidt W., Heinzel R., Appelhans H., Gassen H. G., Lottspeich F. The acid-stable proteinase inhibitor of human mucous secretions (HUSI-I, antileukoprotease). Complete amino acid sequence as revealed by protein and cDNA sequencing and structural homology to whey proteins and Red Sea turtle proteinase inhibitor. FEBS Lett. 1986 Apr 7;199(1):43–48. doi: 10.1016/0014-5793(86)81220-0. [DOI] [PubMed] [Google Scholar]
  37. Shechter Y., Burnstein Y., Gertler A. Effect of oxidation of methionine residues in chicken ovoinhibitor on its inhibitory activities against trypsin, chymotrypsin, and elastase. Biochemistry. 1977 Mar 8;16(5):992–997. doi: 10.1021/bi00624a029. [DOI] [PubMed] [Google Scholar]
  38. Shieh B. H., Travis J. The reactive site of human alpha 2-antiplasmin. J Biol Chem. 1987 May 5;262(13):6055–6059. [PubMed] [Google Scholar]
  39. Smith C. E., Stack M. S., Johnson D. A. Ozone effects on inhibitors of human neutrophil proteinases. Arch Biochem Biophys. 1987 Feb 15;253(1):146–155. doi: 10.1016/0003-9861(87)90647-3. [DOI] [PubMed] [Google Scholar]
  40. Stetler G., Brewer M. T., Thompson R. C. Isolation and sequence of a human gene encoding a potent inhibitor of leukocyte proteases. Nucleic Acids Res. 1986 Oct 24;14(20):7883–7896. doi: 10.1093/nar/14.20.7883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Strandberg L., Lawrence D. A., Johansson L. B., Ny T. The oxidative inactivation of plasminogen activator inhibitor type 1 results from a conformational change in the molecule and does not require the involvement of the P1' methionine. J Biol Chem. 1991 Jul 25;266(21):13852–13858. [PubMed] [Google Scholar]
  42. Swaim M. W., Pizzo S. V. Methionine sulfoxide and the oxidative regulation of plasma proteinase inhibitors. J Leukoc Biol. 1988 Apr;43(4):365–379. doi: 10.1002/jlb.43.4.365. [DOI] [PubMed] [Google Scholar]
  43. Thompson R. C., Ohlsson K. Isolation, properties, and complete amino acid sequence of human secretory leukocyte protease inhibitor, a potent inhibitor of leukocyte elastase. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6692–6696. doi: 10.1073/pnas.83.18.6692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tian W. X., Tsou C. L. Determination of the rate constant of enzyme modification by measuring the substrate reaction in the presence of the modifier. Biochemistry. 1982 Mar 2;21(5):1028–1032. doi: 10.1021/bi00534a031. [DOI] [PubMed] [Google Scholar]
  45. Tournier J. M., Jacquot J., Sadoul P., Bieth J. G. Noncompetitive enzyme immunoassay for the measurement of bronchial inhibitor in biological fluids. Anal Biochem. 1983 Jun;131(2):345–350. doi: 10.1016/0003-2697(83)90181-1. [DOI] [PubMed] [Google Scholar]
  46. Vogelmeier C., Hubbard R. C., Fells G. A., Schnebli H. P., Thompson R. C., Fritz H., Crystal R. G. Anti-neutrophil elastase defense of the normal human respiratory epithelial surface provided by the secretory leukoprotease inhibitor. J Clin Invest. 1991 Feb;87(2):482–488. doi: 10.1172/JCI115021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wallner O., Fritz H. Characterization of an acid-stable proteinase inhibitor in human cervical mucus. Hoppe Seylers Z Physiol Chem. 1974 Jun;355(6):709–715. doi: 10.1515/bchm2.1974.355.1.709. [DOI] [PubMed] [Google Scholar]
  48. Weiss S. J. Tissue destruction by neutrophils. N Engl J Med. 1989 Feb 9;320(6):365–376. doi: 10.1056/NEJM198902093200606. [DOI] [PubMed] [Google Scholar]
  49. Wong P. S., Travis J. Isolation and properties of oxidized alpha-1-proteinase inhibitor from human rheumatoid synovial fluid. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1449–1454. doi: 10.1016/0006-291x(80)90113-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES