Skip to main content
IUCrData logoLink to IUCrData
. 2024 Aug 30;9(Pt 8):x240831. doi: 10.1107/S2414314624008319

Pyridinium tosyl­ate

Eric Cyriel Hosten a, Richard Betz a,*
Editor: W T A Harrisonb
PMCID: PMC11375593  PMID: 39247083

In the crystal, classical N—H⋯O hydrogen bonds as well as C—H⋯O contacts connect the cationic and anionic entities into sheets lying parallel to the ab plane.

Keywords: crystal structure, hydrogen bond, pyridinium salt

Abstract

The title compound (systematic name: pyridinium 4-methyl­benzene­sulfonate), C5H6N+·C7H7O3S, is the pyridinium salt of para-toluene­sulfonic acid. In the crystal, classical N—H⋯O hydrogen bonds as well as C—H⋯O contacts connect the cationic and anionic entities into sheets lying parallel to the ab plane.graphic file with name x-09-x240831-scheme1-3D1.jpg

Structure description

Many fundamental synthesis reactions in preparative organic chemistry make use of activated reagents to allow for the faster and easier production of certain key compounds or to avoid the presence of cumbersome equilibrium reactions. A prime example for this finding is a series of derivatives of carb­oxy­lic acids such as esters and amides that – instead of employing the free acid as staring material – are often more conveniently obtained by using the pertaining carb­oxy­lic anhydride or acyl chloride or bromide as starting materials (Becker et al., 2000). One downside of this increased reactivity is the frequent need to use auxiliary reagents that can mitigate potential side effects of the byproducts produced, most notably basic reagents that can act as acid scavengers to prevent undesired hydrolysis effects. Among the more common ingredients used in the latter context are amines such as tri­ethyl­amine or pyridine whose onium salts can often conveniently be removed from reaction mixtures in organic solvents by means of simple filtration. Occasionally, however, some of the material tenaciously migrates through many steps of purification procedures and can manifest as lingering impurity in the assumed final product. To prevent the waste of valuable data-collection time on diffractometers for future researchers, it is of importance to report the structures even of such undesired compounds as a reference point for the broader scientific community, as done previously by us for ammonium formate (Hosten & Betz, 2014), ammonium phenyl glyoxylate (Hosten & Betz, 2015) as well as the chlorides (Maritz et al., 2021; Muller et al., 2021a,b,c) and tosyl­ate salts (Moleko et al., 2015) of a number of protonated amines. Furthermore, the mol­ecular and crystal structures of the non-radioactive halogenide salts of the pyridinium cation are apparent in the literature (Boenigk & Mootz, 1988; Mootz & Hocken, 1989; Klooster et al., 2019; Owczarek et al., 2012).

The asymmetric unit of the title compound, C5H6N+·C7H7O3S, is shown in Fig. 1 and consists of one complete ion pair. The S—O bond lengths in the anion are found in the narrow range of 1.4525 (14)–1.4682 (14) Å, which is in agreement with full resonant delocalization of the anionic charge over all three oxygen atoms. All other bond lengths and angles are found in good agreement with other tosyl­ates whose mol­ecular and crystal structures were determined on grounds of diffraction studies conducted on single crystals and whose metrical parameters have been deposited with the Cambridge Structural Database (Allen, 2002). The least-squares planes as defined by the non-hydrogen atoms of the cation as well as the intra­cyclic carbon atoms of the tosyl­ate anion inter­sect at an angle of 74.44 (10)°, i.e. the two separate aromatic systems in the asymmetric unit are orientated almost perpendicular to one another.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with anisotropic displacement ellipsoids drawn at 50% probability level.

In the crystal, classical N—H⋯O hydrogen bonds are observed as well as C—H⋯O contacts whose range falls by more than 0.1 Å below the sum of van der Waals radii of the atoms participating in them (Table 1). While the classical hydrogen bonds are established by the pnictogen-bonded hydrogen atom as donor and one of the oxygen atoms of the sulfato group as acceptor, the C—H⋯O contacts are supported by each of the aromatic hydrogen atoms of the cation except for the one in para position to the protonated nitro­gen atom. All three sulfur-bonded oxygen atoms act as acceptors in for the latter contacts. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the classical hydrogen bonds is D on the unary level while the C—H⋯O contacts require a DDDD descriptor on the same level. Overall, the inter­molecular contacts connect the ions of the title compound into sheets lying parallel the the ab plane. A depiction of the pattern is shown in Fig. 2. Aromatic π–π stacking is not a prominent feature in the crystal structure of the title compound with the shortest inter­centroid distance between two aromatic systems measuring 4.9276 (12) Å for the anion and its symmetry-generated equivalent.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O11 0.93 (3) 1.81 (3) 2.724 (2) 166 (3)
C21—H21⋯O13i 0.95 2.41 3.306 (2) 157
C22—H22⋯O12ii 0.95 2.36 3.117 (2) 136
C24—H24⋯O13iii 0.95 2.35 3.202 (2) 149
C25—H25⋯O12 0.95 2.54 3.259 (3) 133
C25—H25⋯O11iii 0.95 2.36 3.194 (2) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

Inter­molecular contacts, viewed approximately along [001].

Synthesis and crystallization

After an initial unintentional isolation of the crystalline compound from a different synthesis product the compound was targeted by reacting a slight excess of liquid pyridine with solid tosylic acid in solvent-free conditions. Crystals of the title compound in the form of colourless blocks suitable for the diffraction study were obtained upon free evaporation of the reaction mixture at room temperature.

Refinement

Data collection and crystallographic data are summarized in Table 2. The crystal used for data collection was found to be an an inversion twin with a volume ratio of 79.3:20.7.

Table 2. Experimental details.

Crystal data
Chemical formula C5H6N+·C7H7O3S
M r 251.29
Crystal system, space group Orthorhombic, P212121
Temperature (K) 200
a, b, c (Å) 5.8868 (2), 8.8927 (4), 22.8226 (9)
V3) 1194.75 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.57 × 0.39 × 0.34
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Numerical (SADABS; Krause et al., 2015)
Tmin, Tmax 0.904, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11137, 2972, 2903
R int 0.013
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.072, 1.08
No. of reflections 2972
No. of parameters 160
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.26
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.21 (8)

Computer programs: APEX2 and SAINT (Bruker, 2010), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314624008319/hb4482sup1.cif

x-09-x240831-sup1.cif (339KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624008319/hb4482Isup2.hkl

x-09-x240831-Isup2.hkl (237.6KB, hkl)
x-09-x240831-Isup3.cml (4.6KB, cml)

Supporting information file. DOI: 10.1107/S2414314624008319/hb4482Isup3.cml

CCDC reference: 2379208

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Ms Alida Gerryts for useful discussions.

full crystallographic data

Pyridinium 4-methylbenzenesulfonate. Crystal data

C5H6N+·C7H7O3S Dx = 1.397 Mg m3
Mr = 251.29 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 9608 reflections
a = 5.8868 (2) Å θ = 2.5–28.3°
b = 8.8927 (4) Å µ = 0.27 mm1
c = 22.8226 (9) Å T = 200 K
V = 1194.75 (8) Å3 Block, colourless
Z = 4 0.57 × 0.39 × 0.34 mm
F(000) = 528

Pyridinium 4-methylbenzenesulfonate. Data collection

Bruker APEXII CCD diffractometer 2972 independent reflections
Radiation source: sealed tube 2903 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.013
φ and ω scans θmax = 28.3°, θmin = 2.5°
Absorption correction: numerical (SADABS; Krause et al., 2015) h = −7→7
Tmin = 0.904, Tmax = 1.000 k = −11→11
11137 measured reflections l = −30→30

Pyridinium 4-methylbenzenesulfonate. Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.2871P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
2972 reflections Δρmax = 0.27 e Å3
160 parameters Δρmin = −0.26 e Å3
0 restraints Absolute structure: Refined as an inversion twin.
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.21 (8)

Pyridinium 4-methylbenzenesulfonate. Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin. The N-bonded H atom was located in a difference map and refined freely. The aromatic carbon-bound H atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl group were allowed to rotate but not to tip around the C—C bond to best fit the experimental electron density with U(H) set to 1.5Ueq(C).

Pyridinium 4-methylbenzenesulfonate. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.59831 (7) 0.68244 (5) 0.67195 (2) 0.02552 (11)
O11 0.5179 (3) 0.56756 (15) 0.71323 (6) 0.0338 (3)
O12 0.5035 (3) 0.82991 (15) 0.68422 (6) 0.0367 (3)
O13 0.8442 (2) 0.68221 (16) 0.66646 (6) 0.0345 (3)
N2 0.1743 (3) 0.6291 (2) 0.78954 (7) 0.0330 (4)
C11 0.4869 (3) 0.62497 (19) 0.60326 (8) 0.0257 (3)
C12 0.2780 (3) 0.6787 (2) 0.58477 (9) 0.0335 (4)
H12 0.200255 0.752191 0.607339 0.040*
C13 0.1821 (4) 0.6250 (3) 0.53319 (10) 0.0390 (5)
H13 0.039834 0.663586 0.520560 0.047*
C14 0.2902 (4) 0.5162 (2) 0.49988 (9) 0.0357 (4)
C15 0.5018 (4) 0.4649 (2) 0.51834 (9) 0.0369 (4)
H15 0.580051 0.392004 0.495557 0.044*
C16 0.6006 (4) 0.5186 (2) 0.56962 (8) 0.0331 (4)
H16 0.745310 0.482637 0.581603 0.040*
C17 0.1802 (5) 0.4560 (3) 0.44461 (10) 0.0515 (6)
H17A 0.185227 0.533185 0.413990 0.077*
H17B 0.021716 0.429478 0.452787 0.077*
H17C 0.262372 0.366456 0.431323 0.077*
C21 0.0159 (4) 0.5375 (2) 0.81078 (9) 0.0345 (4)
H21 0.032091 0.431632 0.806892 0.041*
C22 −0.1711 (4) 0.5966 (2) 0.83835 (9) 0.0375 (5)
H22 −0.286699 0.532290 0.853071 0.045*
C23 −0.1893 (4) 0.7505 (3) 0.84444 (10) 0.0374 (5)
H23 −0.317615 0.793002 0.863489 0.045*
C24 −0.0202 (4) 0.8426 (2) 0.82274 (9) 0.0362 (4)
H24 −0.029529 0.948643 0.827267 0.043*
C25 0.1609 (4) 0.7788 (2) 0.79463 (9) 0.0351 (5)
H25 0.277146 0.840648 0.778725 0.042*
H2 0.297 (5) 0.594 (3) 0.7673 (12) 0.054 (8)*

Pyridinium 4-methylbenzenesulfonate. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0293 (2) 0.02035 (18) 0.02696 (19) 0.00397 (16) 0.00644 (17) 0.00092 (16)
O11 0.0426 (8) 0.0287 (7) 0.0301 (6) 0.0043 (6) 0.0093 (6) 0.0064 (5)
O12 0.0488 (8) 0.0249 (6) 0.0364 (7) 0.0115 (6) 0.0066 (6) −0.0023 (6)
O13 0.0295 (6) 0.0324 (6) 0.0417 (7) 0.0001 (5) 0.0046 (5) −0.0054 (6)
N2 0.0307 (8) 0.0418 (9) 0.0265 (7) 0.0042 (7) 0.0012 (6) −0.0062 (7)
C11 0.0274 (8) 0.0227 (7) 0.0270 (8) 0.0012 (6) 0.0070 (7) 0.0037 (6)
C12 0.0261 (8) 0.0338 (9) 0.0407 (10) 0.0044 (8) 0.0068 (7) 0.0008 (9)
C13 0.0289 (9) 0.0449 (12) 0.0433 (11) 0.0019 (8) 0.0006 (9) 0.0057 (9)
C14 0.0388 (11) 0.0389 (11) 0.0294 (9) −0.0051 (9) 0.0009 (8) 0.0073 (8)
C15 0.0423 (11) 0.0369 (10) 0.0316 (9) 0.0076 (9) 0.0051 (8) −0.0028 (8)
C16 0.0341 (9) 0.0337 (9) 0.0316 (8) 0.0104 (8) 0.0041 (8) −0.0001 (7)
C17 0.0554 (15) 0.0636 (16) 0.0356 (11) −0.0051 (13) −0.0077 (10) 0.0004 (11)
C21 0.0447 (11) 0.0244 (9) 0.0345 (9) −0.0013 (8) −0.0069 (8) −0.0036 (7)
C22 0.0370 (10) 0.0334 (10) 0.0423 (11) −0.0134 (8) 0.0044 (9) 0.0015 (8)
C23 0.0315 (10) 0.0385 (11) 0.0422 (11) 0.0040 (8) 0.0039 (9) −0.0069 (9)
C24 0.0480 (11) 0.0216 (8) 0.0390 (10) −0.0030 (7) −0.0055 (9) −0.0015 (8)
C25 0.0370 (11) 0.0377 (10) 0.0305 (9) −0.0133 (8) 0.0000 (8) 0.0050 (7)

Pyridinium 4-methylbenzenesulfonate. Geometric parameters (Å, º)

S1—O12 1.4525 (14) C15—C16 1.391 (3)
S1—O13 1.4527 (14) C15—H15 0.9500
S1—O11 1.4682 (14) C16—H16 0.9500
S1—C11 1.7745 (19) C17—H17A 0.9800
N2—C21 1.330 (3) C17—H17B 0.9800
N2—C25 1.339 (3) C17—H17C 0.9800
N2—H2 0.93 (3) C21—C22 1.373 (3)
C11—C12 1.385 (3) C21—H21 0.9500
C11—C16 1.390 (2) C22—C23 1.380 (3)
C12—C13 1.390 (3) C22—H22 0.9500
C12—H12 0.9500 C23—C24 1.381 (3)
C13—C14 1.385 (3) C23—H23 0.9500
C13—H13 0.9500 C24—C25 1.368 (3)
C14—C15 1.392 (3) C24—H24 0.9500
C14—C17 1.516 (3) C25—H25 0.9500
O12—S1—O13 113.63 (9) C11—C16—C15 119.79 (19)
O12—S1—O11 112.36 (9) C11—C16—H16 120.1
O13—S1—O11 112.06 (9) C15—C16—H16 120.1
O12—S1—C11 106.76 (9) C14—C17—H17A 109.5
O13—S1—C11 106.96 (8) C14—C17—H17B 109.5
O11—S1—C11 104.32 (9) H17A—C17—H17B 109.5
C21—N2—C25 122.43 (19) C14—C17—H17C 109.5
C21—N2—H2 122.5 (18) H17A—C17—H17C 109.5
C25—N2—H2 114.9 (18) H17B—C17—H17C 109.5
C12—C11—C16 119.60 (18) N2—C21—C22 119.67 (18)
C12—C11—S1 119.87 (14) N2—C21—H21 120.2
C16—C11—S1 120.39 (15) C22—C21—H21 120.2
C11—C12—C13 120.01 (19) C21—C22—C23 119.2 (2)
C11—C12—H12 120.0 C21—C22—H22 120.4
C13—C12—H12 120.0 C23—C22—H22 120.4
C14—C13—C12 121.2 (2) C22—C23—C24 119.8 (2)
C14—C13—H13 119.4 C22—C23—H23 120.1
C12—C13—H13 119.4 C24—C23—H23 120.1
C13—C14—C15 118.3 (2) C25—C24—C23 118.95 (18)
C13—C14—C17 120.5 (2) C25—C24—H24 120.5
C15—C14—C17 121.3 (2) C23—C24—H24 120.5
C16—C15—C14 121.1 (2) N2—C25—C24 119.96 (19)
C16—C15—H15 119.5 N2—C25—H25 120.0
C14—C15—H15 119.5 C24—C25—H25 120.0
O12—S1—C11—C12 −27.38 (17) C13—C14—C15—C16 1.5 (3)
O13—S1—C11—C12 −149.35 (15) C17—C14—C15—C16 −178.9 (2)
O11—S1—C11—C12 91.76 (16) C12—C11—C16—C15 −1.2 (3)
O12—S1—C11—C16 156.98 (15) S1—C11—C16—C15 174.43 (16)
O13—S1—C11—C16 35.00 (18) C14—C15—C16—C11 0.1 (3)
O11—S1—C11—C16 −83.89 (16) C25—N2—C21—C22 1.0 (3)
C16—C11—C12—C13 0.7 (3) N2—C21—C22—C23 −1.1 (3)
S1—C11—C12—C13 −174.98 (16) C21—C22—C23—C24 0.1 (4)
C11—C12—C13—C14 1.0 (3) C22—C23—C24—C25 1.1 (3)
C12—C13—C14—C15 −2.0 (3) C21—N2—C25—C24 0.3 (3)
C12—C13—C14—C17 178.4 (2) C23—C24—C25—N2 −1.3 (3)

Pyridinium 4-methylbenzenesulfonate. Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···O11 0.93 (3) 1.81 (3) 2.724 (2) 166 (3)
C21—H21···O13i 0.95 2.41 3.306 (2) 157
C22—H22···O12ii 0.95 2.36 3.117 (2) 136
C24—H24···O13iii 0.95 2.35 3.202 (2) 149
C25—H25···O12 0.95 2.54 3.259 (3) 133
C25—H25···O11iii 0.95 2.36 3.194 (2) 147

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x, y−1/2, −z+3/2; (iii) −x+1, y+1/2, −z+3/2.

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Becker, H. G. O., Berger, W., Domschke, G., Fanghänel, E., Faust, J., Fischer, M., Gentz, F., Gewald, K., Gluch, R., Mayer, R., Müller, K., Pavel, D., Schmidt, H., Schollberg, K., Schwetlick, K., Seiler, E. & Zeppenfeld, G. (2000). Organikum – Organisch-Chemisches Grundpraktikum, 21st ed. Weinheim: Wiley-VCH.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Boenigk, D. & Mootz, D. (1988). J. Am. Chem. Soc.110, 2135–2139.
  5. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.
  6. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  7. Hosten, E. & Betz, R. (2014). Z. Kristallogr. New Cryst. Struct.229, 143–144.
  8. Hosten, E. & Betz, R. (2015). Z. Kristallogr. New Cryst. Struct.230, 309–310.
  9. Klooster, W. T., Coles, S. J., Coletta, M. & Brechin, E. K. (2019). CSD Communication (refcode TISROF) CCDC, Cambridge, England.
  10. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst.48, 3–10. [DOI] [PMC free article] [PubMed]
  11. Maritz, M., Hosten, E. C. & Betz, R. (2021). Z. Kristallogr. New Cryst. Struct.236, 73–75.
  12. Moleko, P., Tshentu, Z. R., Hosten, E. C. & Betz, R. (2015). Z. Kristallogr. New Cryst. Struct.230, 95–96.
  13. Mootz, D. & Hocken, J. (1989). Z. Naturforsch. B, 44, 1239–1246.
  14. Muller, K., Hosten, E. C. & Betz, R. (2021a). Z. Kristallogr. New Cryst. Struct.236, 281–283.
  15. Muller, K., Hosten, E. C. & Betz, R. (2021b). Z. Kristallogr. New Cryst. Struct.236, 285–286.
  16. Muller, K., Hosten, E. C. & Betz, R. (2021c). Z. Kristallogr. New Cryst. Struct.236, 287–289.
  17. Owczarek, M., Jakubas, R., Kinzhybalo, V., Medycki, W., Kruk, D., Pietraszko, A., Gałazka, M. & Zieliński, P. (2012). Chem. Phys. Lett.537, 38–47.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314624008319/hb4482sup1.cif

x-09-x240831-sup1.cif (339KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624008319/hb4482Isup2.hkl

x-09-x240831-Isup2.hkl (237.6KB, hkl)
x-09-x240831-Isup3.cml (4.6KB, cml)

Supporting information file. DOI: 10.1107/S2414314624008319/hb4482Isup3.cml

CCDC reference: 2379208

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES