Skip to main content
IUCrData logoLink to IUCrData
. 2024 Aug 30;9(Pt 8):x240810. doi: 10.1107/S2414314624008101

Bis[μ-3-(pyridin-2-yl)pyrazolato]bis­[acetato­(3,5-dimethyl-1H-pyrazole)­nickel(II)]

Thangamuniyandi Pilavadi a, Soundararajan Krishnan b, Nagarajan Loganathan a,*,
Editor: M Zellerc
PMCID: PMC11375596  PMID: 39247075

The title compound is a dimeric nickel(II) coordination compound containing two different substituted pyrazoles ligands, namely 3,5-di­methyl­pyrazole and 3-(pyridin-2-yl) pyrazole along with acetate.

Keywords: coordination compound; nickel; 3,5-di­methyl­pyrazole; 3-(pyridin-2-yl) pyrazole; heteroleptic complex; crystal structure

Abstract

The title compound, [Ni2(C8H6N3)2(C2H3O2)2(C5H8N2)2] or [Ni(μ-OOCCH3)(2-PyPz)(Me2PzH)]2 (1) [2-PyPz = 3-(pyridin-2-yl) pyrazole; Me2PzH = 3,5-dimethyl pyrazole] was synthesized from Ni(OOCCH3)2·4H2O, 2-PyPzH, Me2PzH and tri­ethyl­amine as a base. Compound 1 {[Ni2(C30H34N10Ni2O4)]} at 100 K has monoclinic (P21/n) symmetry and the mol­ecules have crystallographic inversion symmetry. Mol­ecules of 1 comprise an almost planar dinuclear NiII core with an N4O2 coordination environment. The equatorial plane consists of N3,O coordination derived from one of the bidentate acetate O atoms and three of the N atoms of the chelating 2-PyPz ligand while the axial positions are occupied by neutral Me2PzH and the second O atom of the acetate unit. The Ni atoms are bridged by the nitro­gen atom of a deprotonated 2-PyPz ligand. Compound 1 exhibits various inter- and intra­molecular C—H⋯O and N—H⋯O hydrogen bonds.graphic file with name x-09-x240810-scheme1-3D1.jpg

Structure description

Noble metals such as palladium, platinum or iridium are widely used in catalysis due to their desirable properties such as the ability to tolerate variable coordination states and oxidation states that predispose them towards catalysing two-electron redox processes, while at the same time also being sufficiently stable and thermally stable to be of practical use. A major drawback is, however, their high price and limited availability. As an alternative to scarce 4 and 5d metals, their more earth-abundant 3d congeners have been investigated, and in particular several nickel-catalysed organic transform­ation strategies were developed and established (Wilke, 1988; Keim, 1990; Montgomery, 2004; Tasker et al., 2014; Diccianni et al., 2020). These include C—C and C—X (X = heteroatom) cross-coupling (Rosen et al., 2011), cyclo­addition (Lautens et al., 1996; Komagawa et al., 2013), asymmetric hydrogenation (Vermaak et al., 2024), photo-redox catalysis (Milligan et al., 2019; Cuesta-Galisteo et al., 2024), reductive coupling (Day et al., 2023) and reductive cyclization reactions (Montgomery, 2004) to name just a few. The inability of nickel to catalyse two-electron transformations can be overcome by the placement of more than one metal atom at the catalytic centre, and dinuclear nickel complexes show an enhanced catalytic activity and a higher robustness that can be traced back to the synergistic inter­action between the two metals in the active site (Uyeda & Farley 2021; Xu et al., 2020). Nickel is also a micronutrient and essential for the biosynthesis of hydrogenase, carbon monoxide de­hydrogenase (CODH) and urease. These enzymes require more than one metal active site to catalyse the enzymatic process. This also substanti­ates the crucial role of the presence of more than one metal centre for 3d-metal-based catalysts.

We are inter­ested in synthesizing dimeric NiII complexes utilizing chelating ligands such as 2-PyPzH [3-(2-pyridyl)pyrazole, C8H7N3]. The use of pyrazole ligands in coordination and organometallic chemistry is well established (Trofimenko, 1972; Mukherjee, 2000; Halcrow, 2009; Viciano-Chumillas et al., 2010). 2-PyPzH usually forms planar dimeric [M(μ-2-PyPz)2]2 units that are thermally stable. Copper-based dimeric complexes with a {[Cu(μ-2-PyPz)2]2}n core have been described (Jeffery et al., 1997; Hu et al., 2006; Das et al., 2019). However, to the best of our knowledge, the analogous nickel complex with an [Ni(μ-2-PyPz)2]n core is unknown. Thus, a reaction was carried out between nickel(II)acetate tetra­hydrate, 2-PyPzH as the primary ligand and highly lipophilic 3,5-di­methyl­pyrazole (Me2PzH) as an ancillary ligand and a small excess of tri­ethyl­amine base in methanol solvent. This was done in a 1:1:5:3.5 ratio, which resulted in the formation of a green solid, which was then recrystallized from methanol solvent to obtain blue crystals of [Ni2(μ-OOCCH3)2(2-PyPz)2(Me2PzH)2] (1). Inter­estingly, the initial reaction between nickel(II)acetate tetra­hydrate, 2-PyPzH and tri­ethyl­amine base in a 1:1:1.5 stoichiometry failed and led to an intra­ctable mixture. However, the addition of a large excess of Me2PzH allowed us to isolate the soluble mol­ecular assembly of 1 (Fig. 1).

Figure 1.

Figure 1

The mol­ecule of 1 (with 50% displacement ellipsoids) with the unlabelled atoms related by crystallographic inversion symmetry (−x, −y, 1 − z). Intra­molecular C—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds are shown as dashed lines.

Compound 1 crystallizes in the monoclinic P21/n space group, in which the asymmetric unit contains half of the mol­ecule. Compound 1 is a dinuclear heteroleptic nickel(II) complex consisting of two each of anionic 2-PyPz, anionic CH3COO and neutral Me2PzH ligands and the complex mol­ecules have crystallographic inversion symmetry. Overall, the two nickel atoms (Ni1 and Ni1i) are bridged through the 2-PyPz ligand and each Ni atom has an N4O2 octa­hedral coordination environment around it. The three N-donors (N1, N2 and N3i) are derived from the 2-PyPz unit, which forms the basal plane of the dimer while the fourth N-coordination (N4) is obtained from the axial neutral Me2PzH ligand. The acetate ligand (O1 and O2) exhibits a synsyn symmetric binding mode (κ2 mode) in which O2 is in the equatorial position while the sixth axial position is occupied by O1.

The following is a summary of the bonding parameters found in compound 1 in which each Ni atom exhibits three different Ni—N distances and two different Ni—O distances. The Ni—N distance involving the anionic pyrazole unit is shorter [Ni1—N2 = 2.0245 (12); Ni1—N3i = 2.0409 (13) Å] compared to the pyridinic N of 2-PyPz [Ni1—N1 = 2.0964 (13) Å] and the neutral Me2PzH ligand [Ni1—N4 = 2.0884 (12) Å]. Additionally, the axial Ni—O distances are longer [Ni1—O1 = 2.1848 (11) Å] than the equatorial distance [Ni1— O2 = 2.1232 (11) Å]. Furthermore, the C—O distances are not equal [C14—O1 = 1.2576 (19); C14—O2 = 1.2641 (19) Å]. It is noteworthy that the dimeric [Ni(μ-2-PyPz)(COOCH3)]2 unit is almost planar, with the two basal trans angles being less than 180° [O1—Ni1—N4 = 170.18 (5); N1—Ni1—N3i = 177.68 (5)°]. The angle between the two apical positions is the most acute [O2—Ni1—N2 = 157.80 (5)°]. Finally, of the twelve right angles around Ni1, seven are closer to 90° [average O—Ni—N = 89.16 (4) and average N—Ni—N = 91.03 (6)°], and the remaining three are obtuse [N2—Ni1—N3i = 100.88 (5); O1—Ni1—N2 = 99.02 (5); O2—Ni1—N4 = 109.07 (5)°].

Compound 1 exhibits several intra- and inter­molecular hydrogen bonds (Table 1, Fig. 2), with atom N6 of Me2PzH forming intra­molecular hydrogen bonds with O1 of the acetate (N6—H6⋯O1i and the reciprocal N6i—H6i⋯O1 3.0800 (17) Å; symmetry code: (i) −x, −y, −z + 1), with N2 [N6—H6⋯N2 2.9931 (18) Å] and N3 [N6—H6⋯N3 3.3065 (18) Å] of 2-PyPz, while the two O atoms of acetate (O1 and O2) inter­act with the pyridine C—H of 2-PyPz and pyrazolyl C—H of Me2PzH. Thus, the hydrogen bonding between C2—H2⋯O2ii [3.2692 (19) Å; symmetry code: (ii) −x + Inline graphic, y + Inline graphic, −z + Inline graphic] and C4—H4⋯O1iii [3.4696 (19) Å; symmetry code: (iii) −x, −y + 1, −z + 1] are inter­molecular in nature while the C9—H9C⋯O1i [3.426 (2) Å], C1—H1⋯O2 [3.1281 (19) Å] and C13—H13B⋯O2 [3.530 (2) Å] are of intra­molecular type.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6⋯N2 0.859 (18) 2.571 (18) 2.9931 (18) 111.4 (14)
N6—H6⋯N3 0.859 (18) 2.591 (19) 3.3065 (18) 141.4 (16)
N6—H6⋯O1i 0.859 (18) 2.332 (19) 3.0800 (17) 145.6 (16)
C1—H1⋯O2 0.95 2.61 3.1281 (19) 115
C2—H2⋯O2ii 0.95 2.37 3.2692 (19) 158
C4—H4⋯O1iii 0.95 2.62 3.4696 (19) 149
C9—H9C⋯O1i 0.98 2.61 3.426 (2) 141
C13—H13B⋯O2 0.98 2.60 3.530 (2) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

Perspective view of 1 showing the intra- (red and black dotted lines) and inter­molecular C—H⋯O (pink dotted lines) and intra­molecular N—H⋯N (blue and black dotted lines) inter­actions with bond distances (several atoms were removed for clarity).

Synthesis and crystallization

0.5 mmol of Ni(OOCCH3)2·4H2O (0.1244 g) was dissolved in 30 ml of methanol. Then, 0.5 mmol of 2-PyPzH (0.0726 g) and 0.79 mmol of tri­ethyl­amine (0.11 ml) were added to the solution. Upon addition of these, the solution became milky white and insoluble. It was stirred for 2 h. After every 30 minutes of stirring, 0.5 mmol of lipophilic Me2PzH (0.2402 g, 2.5 mmol) and equal portions of tri­ethyl­amine (0.11 ml, 0.79 mmol) were added. The solution slowly turned green and was further stirred for 12 h. It was then filtered and solvents were evaporated in vacuo to obtain a pale-green solid. Finally, the solid was recrystallized from methanol solution, which afforded blue crystals of 1. Crystal yield 45% [based on Ni(OOCCH3)2·4H2O], m.p. 212°C. ESI–MS: [M − 2H]+ 713.479; [M1 + Li]+ where [M1 = M-2(Me2PzH)-CH3CO] 487.309. FT–IR (KBr, ν, cm−1): 3122 (s), 3114 (s), 3000 (m), 2937 (s), 2738 (m), 2677 (s), 2015 (m, br), 1470 (m), 1307 (m), 1268 (m), 1407 (m), 1094 (s, br), 1032 (m), 941 (s), 898 (s), 855 (m), 811 (s), 624 (s), 554 (m).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula [Ni2(C8H6N3)2(C2H3O2)2(C5H8N2)2]
M r 716.09
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 11.1045 (7), 9.1489 (6), 15.8088 (11)
β (°) 92.210 (1)
V3) 1604.88 (18)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.23
Crystal size (mm) 0.12 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker APEX
Absorption correction Multi-scan (SADABS; Krause et al., 2015
Tmin, Tmax 0.875, 0.905
No. of measured, independent and observed [I > 2σ(I)] reflections 10468, 3946, 3617
R int 0.025
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 1.04
No. of reflections 3946
No. of parameters 214
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.27

Computer programs: SMART and SAINT (Bruker, 2012), SHELXT (Sheldrick, 2015a), SHELXL2019/2 (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg et al., 2014) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624008101/zl4073sup1.cif

x-09-x240810-sup1.cif (338.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624008101/zl4073Isup2.hkl

x-09-x240810-Isup2.hkl (314.7KB, hkl)

CCDC reference: 2346359

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Dr Orbett Alexander, Department of Chemistry, University of Western Cape, South Africa, is thanked for crystallographic software assistance

full crystallographic data

Bis[µ-3-(pyridin-2-yl)pyrazolato]bis[acetato(3,5-dimethyl-1H-pyrazole)nickel(II)] . Crystal data

[Ni2(C8H6N3)2(C2H3O2)2(C5H8N2)2] F(000) = 744
Mr = 716.09 Dx = 1.482 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 11.1045 (7) Å Cell parameters from 5987 reflections
b = 9.1489 (6) Å θ = 2.6–28.3°
c = 15.8088 (11) Å µ = 1.23 mm1
β = 92.210 (1)° T = 100 K
V = 1604.88 (18) Å3 Prism, blue
Z = 2 0.12 × 0.10 × 0.10 mm

Bis[µ-3-(pyridin-2-yl)pyrazolato]bis[acetato(3,5-dimethyl-1H-pyrazole)nickel(II)] . Data collection

Bruker APEX diffractometer Rint = 0.025
Radiation source: sealed tube θmax = 28.3°, θmin = 2.2°
φ and ω scans h = −14→14
Absorption correction: multi-scan (SADABS; Krause et al., 2015 k = −12→12
Tmin = 0.875, Tmax = 0.905 l = −21→14
10468 measured reflections 4 standard reflections every 22 reflections
3946 independent reflections intensity decay: none
3617 reflections with I > 2σ(I)

Bis[µ-3-(pyridin-2-yl)pyrazolato]bis[acetato(3,5-dimethyl-1H-pyrazole)nickel(II)] . Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Secondary atom site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: mixed
wR(F2) = 0.079 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.5264P] where P = (Fo2 + 2Fc2)/3
3946 reflections (Δ/σ)max < 0.001
214 parameters Δρmax = 0.44 e Å3
0 restraints Δρmin = −0.27 e Å3

Bis[µ-3-(pyridin-2-yl)pyrazolato]bis[acetato(3,5-dimethyl-1H-pyrazole)nickel(II)] . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. All the non-hydrogen atoms were refined anisotropically using full-matrix least-square procedures while carbon bound hydrogen atoms were included in idealized positions and the methyl CH3 were allowed to rotate using a riding model. C—H bonds were constrained to 0.95 Å for aromatic C—H (Uiso(H) = 1.2 Ueq(C)) and 0.98 Å for CH3 [Uiso(H) = 1.5 Ueq(C)] units, respectively. The N—H proton was added from the difference Fourier map and refined with Uiso(H) = 1.2 Ueq(N).

Bis[µ-3-(pyridin-2-yl)pyrazolato]bis[acetato(3,5-dimethyl-1H-pyrazole)nickel(II)] . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.11107 (14) 0.40306 (17) 0.31691 (10) 0.0189 (3)
H1 0.177134 0.357829 0.290855 0.023*
C2 0.08185 (14) 0.54516 (18) 0.29476 (10) 0.0212 (3)
H2 0.125431 0.595694 0.253272 0.025*
C3 −0.01268 (15) 0.61225 (16) 0.33456 (11) 0.0213 (3)
H3 −0.033162 0.710881 0.321898 0.026*
C4 −0.07701 (13) 0.53426 (17) 0.39297 (9) 0.0184 (3)
H4 −0.142463 0.578183 0.420430 0.022*
C5 −0.04392 (13) 0.39056 (15) 0.41058 (9) 0.0152 (3)
C6 −0.10578 (12) 0.29590 (16) 0.46928 (9) 0.0154 (3)
C7 −0.21072 (13) 0.31154 (17) 0.51418 (10) 0.0192 (3)
H7 −0.263572 0.393132 0.515024 0.023*
C8 −0.21990 (13) 0.18053 (17) 0.55720 (10) 0.0191 (3)
H8 −0.282715 0.156611 0.593911 0.023*
C9 −0.31184 (15) −0.1728 (2) 0.28848 (11) 0.0268 (4)
H9A −0.325502 −0.242347 0.241949 0.040*
H9B −0.377717 −0.101487 0.288064 0.040*
H9C −0.308875 −0.225503 0.342481 0.040*
C10 −0.19552 (14) −0.09537 (16) 0.27774 (10) 0.0195 (3)
C11 −0.12922 (14) −0.06840 (18) 0.20783 (10) 0.0206 (3)
H11 −0.149648 −0.094806 0.150952 0.025*
C12 −0.02518 (13) 0.00603 (17) 0.23726 (9) 0.0189 (3)
C13 0.07636 (15) 0.0650 (2) 0.18861 (11) 0.0272 (4)
H13A 0.101087 −0.008066 0.147390 0.041*
H13B 0.144532 0.087654 0.227618 0.041*
H13C 0.050240 0.154119 0.158824 0.041*
C14 0.30155 (13) 0.17584 (17) 0.44170 (10) 0.0207 (3)
C15 0.43466 (15) 0.2066 (2) 0.45627 (13) 0.0363 (4)
H15A 0.473384 0.211363 0.401669 0.054*
H15B 0.471550 0.128286 0.490694 0.054*
H15C 0.445230 0.300123 0.485868 0.054*
N1 0.05042 (11) 0.32623 (14) 0.37348 (8) 0.0158 (2)
N2 −0.05658 (10) 0.16361 (14) 0.48562 (7) 0.0143 (2)
N3 −0.12709 (11) 0.09133 (14) 0.53973 (8) 0.0157 (2)
N4 −0.02724 (11) 0.02391 (14) 0.32099 (8) 0.0161 (2)
N6 −0.13244 (11) −0.03814 (14) 0.34435 (8) 0.0179 (3)
O1 0.23062 (10) 0.19619 (12) 0.50069 (7) 0.0213 (2)
O2 0.26366 (10) 0.12852 (12) 0.37041 (7) 0.0204 (2)
Ni1 0.08662 (2) 0.11295 (2) 0.41577 (2) 0.01351 (7)
H6 −0.1496 (16) −0.046 (2) 0.3967 (12) 0.016*

Bis[µ-3-(pyridin-2-yl)pyrazolato]bis[acetato(3,5-dimethyl-1H-pyrazole)nickel(II)] . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0153 (7) 0.0217 (8) 0.0195 (7) −0.0015 (5) 0.0013 (6) 0.0017 (6)
C2 0.0190 (7) 0.0229 (8) 0.0218 (8) −0.0039 (6) 0.0009 (6) 0.0061 (6)
C3 0.0223 (8) 0.0164 (7) 0.0249 (8) 0.0001 (6) −0.0022 (6) 0.0037 (6)
C4 0.0164 (7) 0.0188 (7) 0.0198 (7) 0.0007 (5) −0.0014 (6) −0.0008 (6)
C5 0.0139 (6) 0.0180 (7) 0.0136 (6) −0.0012 (5) −0.0024 (5) −0.0015 (5)
C6 0.0146 (6) 0.0171 (7) 0.0143 (6) −0.0001 (5) −0.0008 (5) −0.0009 (5)
C7 0.0171 (7) 0.0205 (8) 0.0200 (7) 0.0040 (6) 0.0022 (6) 0.0005 (6)
C8 0.0152 (7) 0.0234 (8) 0.0189 (7) 0.0029 (6) 0.0037 (5) 0.0013 (6)
C9 0.0225 (8) 0.0303 (9) 0.0271 (8) −0.0091 (7) −0.0076 (6) 0.0063 (7)
C10 0.0183 (7) 0.0166 (7) 0.0229 (8) −0.0001 (5) −0.0054 (6) 0.0023 (6)
C11 0.0212 (7) 0.0217 (7) 0.0183 (7) 0.0017 (6) −0.0044 (6) −0.0010 (6)
C12 0.0180 (7) 0.0200 (7) 0.0186 (7) 0.0032 (6) −0.0006 (6) 0.0015 (6)
C13 0.0226 (8) 0.0396 (10) 0.0197 (8) −0.0009 (7) 0.0034 (6) −0.0011 (7)
C14 0.0144 (7) 0.0201 (7) 0.0275 (8) −0.0013 (5) −0.0002 (6) 0.0065 (6)
C15 0.0161 (8) 0.0456 (11) 0.0467 (11) −0.0063 (7) −0.0028 (7) 0.0064 (9)
N1 0.0134 (6) 0.0186 (6) 0.0154 (6) −0.0008 (5) −0.0005 (4) 0.0009 (5)
N2 0.0126 (5) 0.0166 (6) 0.0136 (6) −0.0005 (5) 0.0013 (4) 0.0009 (5)
N3 0.0129 (6) 0.0196 (6) 0.0147 (6) 0.0006 (5) 0.0023 (4) 0.0016 (5)
N4 0.0134 (6) 0.0165 (6) 0.0183 (6) 0.0001 (4) 0.0011 (5) 0.0012 (5)
N6 0.0162 (6) 0.0204 (6) 0.0172 (6) −0.0022 (5) −0.0003 (5) 0.0016 (5)
O1 0.0176 (5) 0.0256 (6) 0.0205 (5) −0.0023 (4) −0.0009 (4) 0.0005 (4)
O2 0.0164 (5) 0.0240 (6) 0.0210 (6) 0.0005 (4) 0.0043 (4) 0.0027 (4)
Ni1 0.01067 (11) 0.01613 (12) 0.01377 (11) −0.00014 (6) 0.00125 (7) 0.00074 (6)

Bis[µ-3-(pyridin-2-yl)pyrazolato]bis[acetato(3,5-dimethyl-1H-pyrazole)nickel(II)] . Geometric parameters (Å, º)

C1—N1 1.3393 (19) C11—C12 1.405 (2)
C1—C2 1.382 (2) C11—H11 0.9500
C1—H1 0.9500 C12—N4 1.3348 (19)
C2—C3 1.388 (2) C12—C13 1.490 (2)
C2—H2 0.9500 C13—H13A 0.9800
C3—C4 1.387 (2) C13—H13B 0.9800
C3—H3 0.9500 C13—H13C 0.9800
C4—C5 1.390 (2) C14—O1 1.2576 (19)
C4—H4 0.9500 C14—O2 1.2641 (19)
C5—N1 1.3547 (19) C14—C15 1.514 (2)
C5—C6 1.460 (2) C14—Ni1 2.4738 (15)
C6—N2 1.3488 (19) C15—H15A 0.9800
C6—C7 1.395 (2) C15—H15B 0.9800
C7—C8 1.384 (2) C15—H15C 0.9800
C7—H7 0.9500 N1—Ni1 2.0964 (13)
C8—N3 1.3514 (19) N2—N3 1.3541 (17)
C8—H8 0.9500 N2—Ni1 2.0245 (12)
C9—C10 1.489 (2) N3—Ni1i 2.0409 (13)
C9—H9A 0.9800 N4—N6 1.3626 (17)
C9—H9B 0.9800 N4—Ni1 2.0884 (12)
C9—H9C 0.9800 N6—H6 0.859 (18)
C10—N6 1.3479 (19) O1—Ni1 2.1848 (11)
C10—C11 1.374 (2) O2—Ni1 2.1232 (11)
N1—C1—C2 122.95 (15) O1—C14—Ni1 61.93 (8)
N1—C1—H1 118.5 O2—C14—Ni1 59.12 (8)
C2—C1—H1 118.5 C15—C14—Ni1 177.13 (13)
C1—C2—C3 118.39 (14) C14—C15—H15A 109.5
C1—C2—H2 120.8 C14—C15—H15B 109.5
C3—C2—H2 120.8 H15A—C15—H15B 109.5
C4—C3—C2 119.50 (14) C14—C15—H15C 109.5
C4—C3—H3 120.2 H15A—C15—H15C 109.5
C2—C3—H3 120.2 H15B—C15—H15C 109.5
C3—C4—C5 118.75 (14) C1—N1—C5 118.57 (13)
C3—C4—H4 120.6 C1—N1—Ni1 127.31 (10)
C5—C4—H4 120.6 C5—N1—Ni1 114.10 (10)
N1—C5—C4 121.80 (14) C6—N2—N3 108.63 (12)
N1—C5—C6 114.08 (13) C6—N2—Ni1 114.95 (10)
C4—C5—C6 124.12 (14) N3—N2—Ni1 135.91 (10)
N2—C6—C7 109.55 (13) C8—N3—N2 107.36 (12)
N2—C6—C5 117.19 (13) C8—N3—Ni1i 129.94 (10)
C7—C6—C5 133.25 (14) N2—N3—Ni1i 122.68 (9)
C8—C7—C6 103.89 (13) C12—N4—N6 105.39 (12)
C8—C7—H7 128.1 C12—N4—Ni1 136.57 (11)
C6—C7—H7 128.1 N6—N4—Ni1 118.01 (9)
N3—C8—C7 110.57 (13) C10—N6—N4 112.04 (13)
N3—C8—H8 124.7 C10—N6—H6 126.3 (12)
C7—C8—H8 124.7 N4—N6—H6 121.3 (12)
C10—C9—H9A 109.5 C14—O1—Ni1 87.55 (9)
C10—C9—H9B 109.5 C14—O2—Ni1 90.15 (9)
H9A—C9—H9B 109.5 N2—Ni1—N3i 100.88 (5)
C10—C9—H9C 109.5 N2—Ni1—N4 90.81 (5)
H9A—C9—H9C 109.5 N3i—Ni1—N4 90.53 (5)
H9B—C9—H9C 109.5 N2—Ni1—N1 79.39 (5)
N6—C10—C11 106.28 (14) N3i—Ni1—N1 177.68 (5)
N6—C10—C9 121.53 (15) N4—Ni1—N1 91.77 (5)
C11—C10—C9 132.18 (15) N2—Ni1—O2 157.80 (5)
C10—C11—C12 106.26 (13) N3i—Ni1—O2 89.05 (5)
C10—C11—H11 126.9 N4—Ni1—O2 109.07 (5)
C12—C11—H11 126.9 N1—Ni1—O2 89.92 (4)
N4—C12—C11 110.03 (14) N2—Ni1—O1 99.02 (5)
N4—C12—C13 120.64 (14) N3i—Ni1—O1 87.78 (5)
C11—C12—C13 129.31 (14) N4—Ni1—O1 170.18 (5)
C12—C13—H13A 109.5 N1—Ni1—O1 89.91 (4)
C12—C13—H13B 109.5 O2—Ni1—O1 61.24 (4)
H13A—C13—H13B 109.5 N2—Ni1—C14 129.01 (5)
C12—C13—H13C 109.5 N3i—Ni1—C14 87.58 (5)
H13A—C13—H13C 109.5 N4—Ni1—C14 139.74 (5)
H13B—C13—H13C 109.5 N1—Ni1—C14 90.48 (5)
O1—C14—O2 121.02 (14) O2—Ni1—C14 30.73 (5)
O1—C14—C15 119.71 (15) O1—Ni1—C14 30.52 (5)
O2—C14—C15 119.27 (15)
N1—C1—C2—C3 1.7 (2) C7—C6—N2—N3 0.44 (16)
C1—C2—C3—C4 −2.0 (2) C5—C6—N2—N3 −178.96 (12)
C2—C3—C4—C5 0.6 (2) C7—C6—N2—Ni1 173.56 (10)
C3—C4—C5—N1 1.2 (2) C5—C6—N2—Ni1 −5.84 (16)
C3—C4—C5—C6 −178.64 (14) C7—C8—N3—N2 0.27 (17)
N1—C5—C6—N2 5.98 (19) C7—C8—N3—Ni1i 178.58 (10)
C4—C5—C6—N2 −174.14 (13) C6—N2—N3—C8 −0.43 (15)
N1—C5—C6—C7 −173.25 (15) Ni1—N2—N3—C8 −171.45 (11)
C4—C5—C6—C7 6.6 (3) C6—N2—N3—Ni1i −178.89 (9)
N2—C6—C7—C8 −0.27 (17) Ni1—N2—N3—Ni1i 10.09 (18)
C5—C6—C7—C8 179.01 (15) C11—C12—N4—N6 −0.36 (17)
C6—C7—C8—N3 0.00 (17) C13—C12—N4—N6 178.19 (14)
N6—C10—C11—C12 0.30 (17) C11—C12—N4—Ni1 177.84 (11)
C9—C10—C11—C12 −178.23 (17) C13—C12—N4—Ni1 −3.6 (2)
C10—C11—C12—N4 0.04 (18) C11—C10—N6—N4 −0.55 (17)
C10—C11—C12—C13 −178.35 (16) C9—C10—N6—N4 178.17 (14)
C2—C1—N1—C5 0.1 (2) C12—N4—N6—C10 0.57 (16)
C2—C1—N1—Ni1 −178.23 (11) Ni1—N4—N6—C10 −178.03 (10)
C4—C5—N1—C1 −1.6 (2) O2—C14—O1—Ni1 1.96 (15)
C6—C5—N1—C1 178.30 (13) C15—C14—O1—Ni1 −177.31 (14)
C4—C5—N1—Ni1 176.96 (11) O1—C14—O2—Ni1 −2.01 (15)
C6—C5—N1—Ni1 −3.15 (15) C15—C14—O2—Ni1 177.26 (14)

Symmetry code: (i) −x, −y, −z+1.

Bis[µ-3-(pyridin-2-yl)pyrazolato]bis[acetato(3,5-dimethyl-1H-pyrazole)nickel(II)] . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N6—H6···N2 0.859 (18) 2.571 (18) 2.9931 (18) 111.4 (14)
N6—H6···N3 0.859 (18) 2.591 (19) 3.3065 (18) 141.4 (16)
N6—H6···O1i 0.859 (18) 2.332 (19) 3.0800 (17) 145.6 (16)
C1—H1···O2 0.95 2.61 3.1281 (19) 115
C2—H2···O2ii 0.95 2.37 3.2692 (19) 158
C4—H4···O1iii 0.95 2.62 3.4696 (19) 149
C9—H9C···O1i 0.98 2.61 3.426 (2) 141
C13—H13B···O2 0.98 2.60 3.530 (2) 159

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x, −y+1, −z+1.

References

  1. Brandenburg, K., Berndt, M. & Putz, H. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2012). SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cuesta–Galisteo, S., Schörgenhumer, J., Hervieu, C. & Nevado, C. (2024). Angew. Chem. Int. Ed.63, e202313717. [DOI] [PubMed]
  4. Das, A. K., De, A., Yadav, P., Lloret, F. & Mukherjee, R. (2019). Polyhedron, 171, 365–373.
  5. Day, C. S., Rentería-Gómez, Á., Ton, S. J., Gogoi, A. R., Gutierrez, O. & Martin, R. (2023). Nat. Catal.6, 244–253.
  6. Diccianni, J., Lin, Q. & Diao, T. (2020). Acc. Chem. Res.53, 906–919. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst.45, 849–854.
  8. Halcrow, M. A. (2009). Dalton Trans. pp. 2059–2073. [DOI] [PubMed]
  9. Hu, T.-L., Li, J.-R., Liu, C.-S., Shi, X.-S., Zhou, J.-N., Bu, X.-H. & Ribas, J. (2006). Inorg. Chem.45, 162–173. [DOI] [PubMed]
  10. Jeffery, J. C., Jones, P. L., Mann, K. L. V., Psillakis, E., McCleverty, J. A., Ward, M. D. & White, C. M. (1997). Chem. Commun. pp. 175–176.
  11. Keim, W. (1990). Angew. Chem. Int. Ed. Engl.29, 235–244.
  12. Komagawa, S., Wang, C., Morokuma, K., Saito, S. & Uchiyama, M. (2013). J. Am. Chem. Soc.135, 14508–14511. [DOI] [PubMed]
  13. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst.48, 3–10. [DOI] [PMC free article] [PubMed]
  14. Lautens, M., Klute, W. & Tam, W. (1996). Chem. Rev.96, 49–92. [DOI] [PubMed]
  15. Milligan, J. A., Phelan, J. P., Badir, S. O. & Molander, G. A. (2019). Angew. Chem. Int. Ed.58, 6152–6163. [DOI] [PMC free article] [PubMed]
  16. Montgomery, J. (2004). Angew. Chem. Int. Ed.43, 3890–3908. [DOI] [PubMed]
  17. Mukherjee, R. (2000). Coord. Chem. Rev.203, 151–218.
  18. Rosen, B. M., Quasdorf, K. W., Wilson, D. A., Zhang, N., Resmerita, A., Garg, N. K. & Percec, V. (2011). Chem. Rev.111, 1346–1416. [DOI] [PMC free article] [PubMed]
  19. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  20. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  21. Tasker, S. Z., Standley, E. A. & Jamison, T. F. (2014). Nature, 509, 299–309. [DOI] [PMC free article] [PubMed]
  22. Trofimenko, S. (1972). Chem. Rev.72, 497–509.
  23. Uyeda, C. & Farley, C. M. (2021). Acc. Chem. Res.54, 3710–3719. [DOI] [PMC free article] [PubMed]
  24. Vermaak, V., Vosloo, H. C. M. & Swarts, A. J. (2024). Coord. Chem. Rev.507, 215716.
  25. Viciano–Chumillas, M., Tanase, S., de Jongh, L. J. & Reedijk, J. (2010). Eur. J. Inorg. Chem. pp. 3403–3418. [DOI] [PubMed]
  26. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.
  27. Wilke, G. (1988). Angew. Chem. Int. Ed. Engl.27, 185–206.
  28. Xu, W., Li, M., Qiao, L. & Xie, J. (2020). Chem. Commun.56, 8524–8536. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624008101/zl4073sup1.cif

x-09-x240810-sup1.cif (338.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624008101/zl4073Isup2.hkl

x-09-x240810-Isup2.hkl (314.7KB, hkl)

CCDC reference: 2346359

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES