Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Oct 1;303(Pt 1):163–170. doi: 10.1042/bj3030163

Characterization of monoclonal antibodies against Naja naja oxiana neurotoxin I.

B G Stiles 1, F W Sexton 1, S B Guest 1, M A Olson 1, D C Hack 1
PMCID: PMC1137571  PMID: 7945236

Abstract

Seven monoclonal antibodies (mAbs) were developed against neurotoxin I (NT-1), a protein from central Asian cobra (Naja naja oxiana) venom which binds specifically to nicotinic acetylcholine receptor (AchR). All of the mAbs cross-reacted with another long-chain post-synaptic neurotoxin, Bungarus multicinctus alpha-bungarotoxin (alpha-BT), but not Naja naja kaouthia alpha-cobratoxin, in an enzyme-linked immunosorbent assay (e.l.i.s.a.). Short-chain post-synaptic neurotoxins like Naja naja atra cobrotoxin, Laticauda semifasciata erabutoxin b, or N. n. oxiana neurotoxin II did not cross-react with the NT-1 mAbs, but an antigen(s) found in Dendroaspis polylepis, Acanthophis antarcticus and Pseudechis australis venoms was immunoreactive. The e.l.i.s.a. readings for dithiothreitol-reduced NT-1 and NT-1 mAbs ranged from 13 to 27% of those for native toxin but reduced alpha-BT was not immunoreactive. Synthetic NT-1 peptides were used in epitope-mapping studies and two, non-contiguous regions (Cys15-Tyr23 and Lys25-Gly33 or Pro17-Lys25 and Asp29-Lys37) were recognized by the NT-1 mAbs. The NT-1 mAbs individually inhibited 31-71% of alpha-BT binding to AchR in vitro and afforded a slight protective effect in vivo with a toxin: antibody mole ratio of 1:1.5. This report is the first to describe mAbs which recognize and protect against a heterologous, long-chain, post-synaptic neurotoxin from snake venom.

Full text

PDF
163

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amit A. G., Mariuzza R. A., Phillips S. E., Poljak R. J. Three-dimensional structure of an antigen-antibody complex at 2.8 A resolution. Science. 1986 Aug 15;233(4765):747–753. doi: 10.1126/science.2426778. [DOI] [PubMed] [Google Scholar]
  2. Betzel C., Lange G., Pal G. P., Wilson K. S., Maelicke A., Saenger W. The refined crystal structure of alpha-cobratoxin from Naja naja siamensis at 2.4-A resolution. J Biol Chem. 1991 Nov 15;266(32):21530–21536. doi: 10.2210/pdb2ctx/pdb. [DOI] [PubMed] [Google Scholar]
  3. Boquet P., Poilleux G., Dumarey C., Izard Y., Ronsseray A. M. An attempt to classify the toxic proteins of Elapidae and Hydrophiidae venoms. Toxicon. 1973 Jul;11(4):333–340. doi: 10.1016/0041-0101(73)90030-5. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Chang C. C., Yang C. C. Immunochemical studies on cobrotoxin. J Immunol. 1969 Jun;102(6):1437–1444. [PubMed] [Google Scholar]
  6. Charpentier I., Pillet L., Karlsson E., Couderc J., Ménez A. Recognition of the acetylcholine receptor binding site of a long-chain neurotoxin by toxin-specific monoclonal antibodies. J Mol Recognit. 1990 Apr;3(2):74–81. doi: 10.1002/jmr.300030204. [DOI] [PubMed] [Google Scholar]
  7. Chuang L. Y., Lin S. R., Chang S. F., Chang C. C. Preparation and characterization of monoclonal antibody specific for alpha-bungarotoxin and localization of the epitope. Toxicon. 1989;27(2):211–219. doi: 10.1016/0041-0101(89)90134-7. [DOI] [PubMed] [Google Scholar]
  8. Danse J. M., Toussaint J. L., Kempf J. Neutralization of alpha-bungarotoxin by monoclonal antibodies. Toxicon. 1986;24(2):141–151. doi: 10.1016/0041-0101(86)90116-9. [DOI] [PubMed] [Google Scholar]
  9. Dufton M. J., Hider R. C. Conformational properties of the neurotoxins and cytotoxins isolated from Elapid snake venoms. CRC Crit Rev Biochem. 1983;14(2):113–171. doi: 10.3109/10409238309102792. [DOI] [PubMed] [Google Scholar]
  10. Geysen H. M., Meloen R. H., Barteling S. J. Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc Natl Acad Sci U S A. 1984 Jul;81(13):3998–4002. doi: 10.1073/pnas.81.13.3998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Geysen H. M., Rodda S. J., Mason T. J. A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Mol Immunol. 1986 Jul;23(7):709–715. doi: 10.1016/0161-5890(86)90081-7. [DOI] [PubMed] [Google Scholar]
  12. Grishin E. V., Sukhikh A. P., Slobodyan L. N., Ovchinnikov YuA, Sorokin V. M. Amino acid sequence of neurotoxin I from Naja naja oxiana venom. FEBS Lett. 1974 Sep 1;45(1):118–121. doi: 10.1016/0014-5793(74)80825-2. [DOI] [PubMed] [Google Scholar]
  13. Ishikawa Y., Menez A., Hori H., Yoshida H., Tamiya N. Structure of snake toxins and their affinity to the acetylcholine receptor of fish electric organ. Toxicon. 1977;15(6):477–488. doi: 10.1016/0041-0101(77)90098-8. [DOI] [PubMed] [Google Scholar]
  14. Karlsson E., Eaker D., Ponterius G. Modification of amino groups in Naja naja neurotoxins and the preparation of radioactive derivatives. Biochim Biophys Acta. 1972 Feb 29;257(2):235–248. doi: 10.1016/0005-2795(72)90275-9. [DOI] [PubMed] [Google Scholar]
  15. Kase R., Kitagawa H., Hayashi K., Tanoue K., Inagaki F. Neutralizing monoclonal antibody specific for alpha-bungarotoxin: preparation and characterization of the antibody, and localization of antigenic region of alpha-bungarotoxin. FEBS Lett. 1989 Aug 28;254(1-2):106–110. doi: 10.1016/0014-5793(89)81018-x. [DOI] [PubMed] [Google Scholar]
  16. Kim H. S., Tamiya N. Isolation, properties and amino acid sequence of a long-chain neurotoxin, Acanthophis antarcticus b, from the venom of an Australian snake (the common death adder, Acanthophis antarcticus). Biochem J. 1981 Mar 1;193(3):899–906. doi: 10.1042/bj1930899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Le Goas R., LaPlante S. R., Mikou A., Delsuc M. A., Guittet E., Robin M., Charpentier I., Lallemand J. Y. Alpha-cobratoxin: proton NMR assignments and solution structure. Biochemistry. 1992 May 26;31(20):4867–4875. doi: 10.1021/bi00135a018. [DOI] [PubMed] [Google Scholar]
  18. Love R. A., Stroud R. M. The crystal structure of alpha-bungarotoxin at 2.5 A resolution: relation to solution structure and binding to acetylcholine receptor. Protein Eng. 1986 Oct-Nov;1(1):37–46. doi: 10.1093/protein/1.1.37. [DOI] [PubMed] [Google Scholar]
  19. Mebs D., Narita K., Iwanaga S., Samejima Y., Lee C. Y. Purification, properties and amino acid sequence of -bungarotoxin from the venom of Bungarus multicinctus. Hoppe Seylers Z Physiol Chem. 1972 Feb;353(2):243–262. doi: 10.1515/bchm2.1972.353.1.243. [DOI] [PubMed] [Google Scholar]
  20. Mikhailov A. M., Nickitenko A. V., Trakhanov S. D., Vainshtein B. K., Chetverina E. V. Crystallization and preliminary x-ray diffraction study of neurotoxin-I from Naja naja oxiana venom. FEBS Lett. 1990 Aug 20;269(1):255–257. doi: 10.1016/0014-5793(90)81167-m. [DOI] [PubMed] [Google Scholar]
  21. Nickitenko A. V., Michailov A. M., Betzel C., Wilson K. S. Three-dimensional structure of neurotoxin-1 from Naja naja oxiana venom at 1.9 A resolution. FEBS Lett. 1993 Apr 5;320(2):111–117. doi: 10.1016/0014-5793(93)80073-4. [DOI] [PubMed] [Google Scholar]
  22. Pachner A. R., Ricalton N. In vitro neutralization by monoclonal antibodies of alpha-bungarotoxin binding to acetylcholine receptor. Toxicon. 1989;27(12):1263–1268. doi: 10.1016/0041-0101(89)90057-3. [DOI] [PubMed] [Google Scholar]
  23. Poljak R. J. X-ray diffraction studies of immunoglobulins. Adv Immunol. 1975;21:1–33. [PubMed] [Google Scholar]
  24. Ruan K. H., Spurlino J., Quiocho F. A., Atassi M. Z. Acetylcholine receptor-alpha-bungarotoxin interactions: determination of the region-to-region contacts by peptide-peptide interactions and molecular modeling of the receptor cavity. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6156–6160. doi: 10.1073/pnas.87.16.6156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sheriff S., Silverton E. W., Padlan E. A., Cohen G. H., Smith-Gill S. J., Finzel B. C., Davies D. R. Three-dimensional structure of an antibody-antigen complex. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8075–8079. doi: 10.1073/pnas.84.22.8075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sheumack D. D., Spence I., Tyler M. I., Howden M. E. The complete amino acid sequence of a post-synaptic neurotoxin isolated from the venom of the Australian death adder snake Acanthophis antarcticus. Comp Biochem Physiol B. 1990;95(1):45–50. doi: 10.1016/0305-0491(90)90246-p. [DOI] [PubMed] [Google Scholar]
  27. Stiles B. G. A non-radioactive receptor assay for snake venom postsynaptic neurotoxins. Toxicon. 1991;29(4-5):503–510. doi: 10.1016/0041-0101(91)90024-l. [DOI] [PubMed] [Google Scholar]
  28. Stiles B. G. Acetylcholine receptor binding characteristics of snake and cone snail venom postsynaptic neurotoxins: further studies with a non-radioactive assay. Toxicon. 1993 Jul;31(7):825–834. doi: 10.1016/0041-0101(93)90217-7. [DOI] [PubMed] [Google Scholar]
  29. Stiles B. G., Lidgerding B. C., Sexton F. W., Guest S. B. Production and characterization of monoclonal antibodies against Naja naja atra cobrotoxin. Toxicon. 1991;29(10):1195–1204. doi: 10.1016/0041-0101(91)90192-t. [DOI] [PubMed] [Google Scholar]
  30. Stiles B. G., Middlebrook J. L. Epitope mapping of snake venom phospholipases A2 with pseudexin monoclonal antibodies. J Protein Chem. 1991 Apr;10(2):193–204. doi: 10.1007/BF01024784. [DOI] [PubMed] [Google Scholar]
  31. Strydom D. J. Snake venom toxins. The amino acid sequences of two toxins from Dendroaspis polylepis polylepis (black mamba) venom. J Biol Chem. 1972 Jun 25;247(12):4029–4042. [PubMed] [Google Scholar]
  32. Takasaki C. Amino acid sequence of a long-chain neurotoxin homologue, Pa ID, from the venom of an Australian elapid snake, Pseudechis australis. J Biochem. 1989 Jul;106(1):11–16. doi: 10.1093/oxfordjournals.jbchem.a122797. [DOI] [PubMed] [Google Scholar]
  33. Trémeau O., Boulain J. C., Couderc J., Fromageot P., Ménez A. A monoclonal antibody which recognized the functional site of snake neurotoxins and which neutralizes all short-chain variants. FEBS Lett. 1986 Nov 24;208(2):236–240. doi: 10.1016/0014-5793(86)81024-9. [DOI] [PubMed] [Google Scholar]
  34. Tu A. T. Neurotoxins of animal venoms: snakes. Annu Rev Biochem. 1973;42:235–258. doi: 10.1146/annurev.bi.42.070173.001315. [DOI] [PubMed] [Google Scholar]
  35. Van Regenmortel M. H. Structural and functional approaches to the study of protein antigenicity. Immunol Today. 1989 Aug;10(8):266–272. doi: 10.1016/0167-5699(89)90140-0. [DOI] [PubMed] [Google Scholar]
  36. Walkinshaw M. D., Saenger W., Maelicke A. Three-dimensional structure of the "long" neurotoxin from cobra venom. Proc Natl Acad Sci U S A. 1980 May;77(5):2400–2404. doi: 10.1073/pnas.77.5.2400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Weber M., Changeux J. P. Binding of Naja nigricollis (3H)alpha-toxin to membrane fragments from Electrophorus and Torpedo electric organs. II. Effect of cholinergic agonists and antagonists on the binding of the tritiated alpha-neurotoxin. Mol Pharmacol. 1974 Jan;10(1):15–34. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES