Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Oct 1;303(Pt 1):213–216. doi: 10.1042/bj3030213

Zinc, vanadate and selenate inhibit the tri-iodothyronine-induced expression of fatty acid synthase and malic enzyme in chick-embryo hepatocytes in culture.

Y Zhu 1, A G Goodridge 1, S R Stapleton 1
PMCID: PMC1137578  PMID: 7945243

Abstract

Insulin regulates the expression of genes involved in a variety of metabolic processes. In chick-embryo hepatocytes in culture, insulin amplifies the tri-iodothyronine (T3)-induced enzyme activity, and the level and rate of transcription of mRNA for both fatty acid synthase (FAS) and malic enzyme (ME). Insulin alone, however, has little or no effect on the expression of these genes. In chick-embryo hepatocytes, the mechanism by which insulin regulates the expression of these or other genes is not known. Several recent studies have compared the effects of zinc, vanadate and selenate on insulin-sensitive processes in an attempt to probe the mechanism of insulin action. Because zinc, vanadate and selenate mimic the effects of insulin on several processes, they have been termed insulin-mimetics. We have studied the effect of zinc, vanadate and selenate on the T3-induced expression of both FAS and ME. Like insulin, these agents had little or no effect on the basal activities for FAS and ME in chick-embryo hepatocytes in culture for 48 h. Unlike insulin, however, zinc, vanadate and selenate inhibited the T3-induced activities and mRNA levels of both FAS and ME. Maximal inhibition was achieved at concentrations of 50 microM zinc or vanadate, or 20 microM selenate. Zinc and vanadate also inhibited the T3-induced transcription of the FAS and ME genes. Although the mechanism of this inhibition is unknown, our results indicate that it is not mediated through inhibition of binding of T3 to its nuclear receptor nor through a general toxic effect. Thus zinc, vanadate and selenate are not insulin-mimetics under all conditions, and their effects on other insulin-sensitive processes may be fortuitous and unrelated to actions or components of the insulin signalling pathway.

Full text

PDF
213

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham A. S., Brooks B. A., Eylath U. The effects of chromium supplementation on serum glucose and lipids in patients with and without non-insulin-dependent diabetes. Metabolism. 1992 Jul;41(7):768–771. doi: 10.1016/0026-0495(92)90318-5. [DOI] [PubMed] [Google Scholar]
  2. Bendayan M., Gingras D. Effect of vanadate administration on blood glucose and insulin levels as well as on the exocrine pancreatic function in streptozotocin-diabetic rats. Diabetologia. 1989 Aug;32(8):561–567. doi: 10.1007/BF00285328. [DOI] [PubMed] [Google Scholar]
  3. Blondel O., Bailbe D., Portha B. In vivo insulin resistance in streptozotocin-diabetic rats--evidence for reversal following oral vanadate treatment. Diabetologia. 1989 Mar;32(3):185–190. doi: 10.1007/BF00265092. [DOI] [PubMed] [Google Scholar]
  4. Cahn R. D., Zwilling E., Kaplan N. O., Levine L. Nature and Development of Lactic Dehydrogenases: The two major types of this enzyme form molecular hybrids which change in makeup during development. Science. 1962 Jun 15;136(3520):962–969. doi: 10.1126/science.136.3520.962. [DOI] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cleveland D. W., Kirschner M. W., Cowan N. J. Isolation of separate mRNAs for alpha- and beta-tubulin and characterization of the corresponding in vitro translation products. Cell. 1978 Nov;15(3):1021–1031. doi: 10.1016/0092-8674(78)90286-6. [DOI] [PubMed] [Google Scholar]
  8. Dugaiczyk A., Haron J. A., Stone E. M., Dennison O. E., Rothblum K. N., Schwartz R. J. Cloning and sequencing of a deoxyribonucleic acid copy of glyceraldehyde-3-phosphate dehydrogenase messenger ribonucleic acid isolated from chicken muscle. Biochemistry. 1983 Mar 29;22(7):1605–1613. doi: 10.1021/bi00276a013. [DOI] [PubMed] [Google Scholar]
  9. Emerson C. P., Jr, Humphreys T. A simple and sensitive method for quantitative measurement of cellular RNA synthesis. Anal Biochem. 1971 Apr;40(2):254–266. doi: 10.1016/0003-2697(71)90384-8. [DOI] [PubMed] [Google Scholar]
  10. Ezaki O. The insulin-like effects of selenate in rat adipocytes. J Biol Chem. 1990 Jan 15;265(2):1124–1128. [PubMed] [Google Scholar]
  11. Freemont P. S., Lane A. N., Sanderson M. R. Structural aspects of protein-DNA recognition. Biochem J. 1991 Aug 15;278(Pt 1):1–23. doi: 10.1042/bj2780001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GLASER L., BROWN D. H. Purification and properties of d-glucose-6-phosphate dehydrogenase. J Biol Chem. 1955 Sep;216(1):67–79. [PubMed] [Google Scholar]
  13. Goldman M. J., Back D. W., Goodridge A. G. Nutritional regulation of the synthesis and degradation of malic enzyme messenger RNA in duck liver. J Biol Chem. 1985 Apr 10;260(7):4404–4408. [PubMed] [Google Scholar]
  14. Goodbridge A. G. On the relationship between fatty acid synthesis and the total activities of acetyl coenzyme A carboxylase and fatty acid synthetase in the liver of prenatal and early postnatal chicks. J Biol Chem. 1973 Mar 25;248(6):1932–1938. [PubMed] [Google Scholar]
  15. Goodridge A. G. Regulation of fatty acid synthesis in isolated hepatocytes prepared from the livers of neonatal chicks. J Biol Chem. 1973 Mar 25;248(6):1924–1931. [PubMed] [Google Scholar]
  16. Heffetz D., Rutter W. J., Zick Y. The insulinomimetic agents H2O2 and vanadate stimulate tyrosine phosphorylation of potential target proteins for the insulin receptor kinase in intact cells. Biochem J. 1992 Dec 1;288(Pt 2):631–635. doi: 10.1042/bj2880631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Linial M., Gunderson N., Groudine M. Enhanced transcription of c-myc in bursal lymphoma cells requires continuous protein synthesis. Science. 1985 Dec 6;230(4730):1126–1132. doi: 10.1126/science.2999973. [DOI] [PubMed] [Google Scholar]
  19. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  20. McCormick C. C., Salati L. M., Goodridge A. G. Abundance of hepatic metallothionein mRNA is increased by protein-synthesis inhibitors. Evidence for transcriptional activation and post-transcriptional regulation. Biochem J. 1991 Jan 1;273(Pt 1):185–188. doi: 10.1042/bj2730185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McKnight G. S., Palmiter R. D. Transcriptional regulation of the ovalbumin and conalbumin genes by steroid hormones in chick oviduct. J Biol Chem. 1979 Sep 25;254(18):9050–9058. [PubMed] [Google Scholar]
  22. McNeill J. H., Delgatty H. L., Battell M. L. Insulinlike effects of sodium selenate in streptozocin-induced diabetic rats. Diabetes. 1991 Dec;40(12):1675–1678. doi: 10.2337/diab.40.12.1675. [DOI] [PubMed] [Google Scholar]
  23. Mitchell P. J., Tjian R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science. 1989 Jul 28;245(4916):371–378. doi: 10.1126/science.2667136. [DOI] [PubMed] [Google Scholar]
  24. Pugazhenthi S., Khandelwal R. L., Angel J. F. Insulin-like effect of vanadate on malic enzyme and glucose-6-phosphate dehydrogenase activities in streptozotocin-induced diabetic rat liver. Biochim Biophys Acta. 1991 Jun 3;1083(3):310–312. doi: 10.1016/0005-2760(91)90088-y. [DOI] [PubMed] [Google Scholar]
  25. Pugazhenthi S., Khandelwal R. L. Insulinlike effects of vanadate on hepatic glycogen metabolism in nondiabetic and streptozocin-induced diabetic rats. Diabetes. 1990 Jul;39(7):821–827. doi: 10.2337/diab.39.7.821. [DOI] [PubMed] [Google Scholar]
  26. Ramanadham S., Mongold J. J., Brownsey R. W., Cros G. H., McNeill J. H. Oral vanadyl sulfate in treatment of diabetes mellitus in rats. Am J Physiol. 1989 Sep;257(3 Pt 2):H904–H911. doi: 10.1152/ajpheart.1989.257.3.H904. [DOI] [PubMed] [Google Scholar]
  27. Ramirez I. J., Halwer M., Shapiro L. E., Surks M. I. Zinc(II) inhibits the release of thyroid and glucocorticoid receptors from chromatin of cultured GC cells. Horm Metab Res. 1991 Apr;23(4):155–161. doi: 10.1055/s-2007-1003640. [DOI] [PubMed] [Google Scholar]
  28. Rider M. H., Bartrons R., Hue L. Vanadate inhibits liver fructose-2,6-bisphosphatase. Eur J Biochem. 1990 May 31;190(1):53–56. doi: 10.1111/j.1432-1033.1990.tb15544.x. [DOI] [PubMed] [Google Scholar]
  29. Salati L. M., Ma X. J., McCormick C. C., Stapleton S. R., Goodridge A. G. Triiodothyronine stimulates and cyclic AMP inhibits transcription of the gene for malic enzyme in chick embryo hepatocytes in culture. J Biol Chem. 1991 Feb 25;266(6):4010–4016. [PubMed] [Google Scholar]
  30. Samuels H. H., Tsai J. S. Thyroid hormone action in cell culture: domonstration of nuclear receptors in intact cells and isolated nuclei. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3488–3492. doi: 10.1073/pnas.70.12.3488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Saxena A. K., Srivastava P., Baquer N. Z. Effects of vanadate on glycolytic enzymes and malic enzyme in insulin-dependent and -independent tissues of diabetic rats. Eur J Pharmacol. 1992 May 27;216(1):123–126. doi: 10.1016/0014-2999(92)90219-t. [DOI] [PubMed] [Google Scholar]
  32. Shisheva A., Gefel D., Shechter Y. Insulinlike effects of zinc ion in vitro and in vivo. Preferential effects on desensitized adipocytes and induction of normoglycemia in streptozocin-induced rats. Diabetes. 1992 Aug;41(8):982–988. doi: 10.2337/diab.41.8.982. [DOI] [PubMed] [Google Scholar]
  33. Stapleton S. R., Mitchell D. A., Salati L. M., Goodridge A. G. Triiodothyronine stimulates transcription of the fatty acid synthase gene in chick embryo hepatocytes in culture. Insulin and insulin-like growth factor amplify that effect. J Biol Chem. 1990 Oct 25;265(30):18442–18446. [PubMed] [Google Scholar]
  34. Surks M. I., Ramirez I. J., Shapiro L. E., Kumara-Siri M. Effect of zinc(II) and other divalent cations on binding of 3,5,3'-triiodo-L-thyronine to nuclear receptors from cultured GC cells. J Biol Chem. 1989 Jun 15;264(17):9820–9826. [PubMed] [Google Scholar]
  35. Weinstock R. S., Messina J. L. Vanadate and insulin stimulate gene 33 expression. Biochem Biophys Res Commun. 1992 Dec 15;189(2):931–937. doi: 10.1016/0006-291x(92)92293-7. [DOI] [PubMed] [Google Scholar]
  36. Yuan Z. Y., Liu W., Hammes G. G. Molecular cloning and sequencing of DNA complementary to chicken liver fatty acid synthase mRNA. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6328–6331. doi: 10.1073/pnas.85.17.6328. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES