Abstract
We have demonstrated that cultured intimal smooth muscle cells (SMC) from thickened intima can metabolize acetylated low-density lipoprotein (LDL) by a scavenger pathway, but medial SMC from normal arteries cannot. In this study we investigated the expression mechanism of the scavenger pathway in medial SMC using a phorbol ester. Medial SMC were incubated with 10(-10)-10(-7) M phorbol 12-myristate 13-acetate (PMA) for 1-24 h and then their degradation of 125I-labelled acetylated LDL was assayed. Unstimulated SMC degraded little acetylated LDL, but incubation for 24 h with PMA dose-dependently stimulated its degradation by SMC, the optimal PMA concentration being 1 x 10(-8) M. Induction of expression of the scavenger pathway required more than 4 h of incubation with PMA and was completely inhibited by cycloheximide. In addition expression of the scavenger pathway was not transient but stable. Induction of expression of the scavenger pathway by PMA was not inhibited by protein kinase C inhibitors, but was inhibited about 50% by phospholipase A2 inhibitors. The study, using various phorbol esters, indicated that induction of the scavenger pathway was well correlated with their ability to stimulate phospholipase A2 in medial SMC but not with their ability to activate protein kinase C. Moreover, incubation with exogenous phospholipase A2 (0.1-10 units/ml) or its product, lysophosphatidylcholine (0.01-100 micrograms/ml) dose-dependently increased degradation of 125I-labelled acetylated LDL in medial SMC. Lysophosphatidylcholine was most effective in various lysophospholipids. These results suggest that PMA induced the scavenger pathway in part by stimulating phospholipase A2 in medial SMC, and that a product, lysophosphatidylcholine, is a mediator of expression of the scavenger pathway.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arai H., Kita T., Yokode M., Narumiya S., Kawai C. Multiple receptors for modified low density lipoproteins in mouse peritoneal macrophages: different uptake mechanisms for acetylated and oxidized low density lipoproteins. Biochem Biophys Res Commun. 1989 Mar 31;159(3):1375–1382. doi: 10.1016/0006-291x(89)92262-6. [DOI] [PubMed] [Google Scholar]
- Basu S. K., Goldstein J. L., Anderson G. W., Brown M. S. Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemia fibroblasts. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3178–3182. doi: 10.1073/pnas.73.9.3178. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown M. S., Goldstein J. L. Receptor-mediated control of cholesterol metabolism. Science. 1976 Jan 16;191(4223):150–154. doi: 10.1126/science.174194. [DOI] [PubMed] [Google Scholar]
- Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
- Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
- Fisher-Dzoga K., Jones R. M., Vesselinovitch D., Wissler R. W. Ultrastructural and immunohistochemical studies of primary cultures of aortic medial cells. Exp Mol Pathol. 1973 Apr;18(2):162–176. doi: 10.1016/0014-4800(73)90014-2. [DOI] [PubMed] [Google Scholar]
- Gavino V. C., Miller J. S., Ikharebha S. O., Milo G. E., Cornwell D. G. Effect of polyunsaturated fatty acids and antioxidants on lipid peroxidation in tissue cultures. J Lipid Res. 1981 Jul;22(5):763–769. [PubMed] [Google Scholar]
- Goldstein J. L., Brown M. S., Anderson R. G., Russell D. W., Schneider W. J. Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu Rev Cell Biol. 1985;1:1–39. doi: 10.1146/annurev.cb.01.110185.000245. [DOI] [PubMed] [Google Scholar]
- Goldstein J. L., Brown M. S. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem. 1977;46:897–930. doi: 10.1146/annurev.bi.46.070177.004341. [DOI] [PubMed] [Google Scholar]
- Goldstein J. L., Ho Y. K., Basu S. K., Brown M. S. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A. 1979 Jan;76(1):333–337. doi: 10.1073/pnas.76.1.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imai H., Lee K. T., Pastori S., Panlilio E., Florentin R., Thomas W. A. Atherosclerosis in rabbits. Architectural and subcellular alterations of smooth muscle cells of aortas in response to hyperlipemia. Exp Mol Pathol. 1966 Jun;5(3):273–310. doi: 10.1016/0014-4800(66)90036-0. [DOI] [PubMed] [Google Scholar]
- Inaba T., Yamada N., Gotoda T., Shimano H., Shimada M., Momomura K., Kadowaki T., Motoyoshi K., Tsukada T., Morisaki N. Expression of M-CSF receptor encoded by c-fms on smooth muscle cells derived from arteriosclerotic lesion. J Biol Chem. 1992 Mar 15;267(8):5693–5699. [PubMed] [Google Scholar]
- Jaakkola O., Kallioniemi O. P., Nikkari T. Lipoprotein uptake in primary cell cultures of rabbit atherosclerotic lesions. A fluorescence microscopic and flow cytometric study. Atherosclerosis. 1988 Feb;69(2-3):257–268. doi: 10.1016/0021-9150(88)90022-6. [DOI] [PubMed] [Google Scholar]
- Kodama T., Freeman M., Rohrer L., Zabrecky J., Matsudaira P., Krieger M. Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature. 1990 Feb 8;343(6258):531–535. doi: 10.1038/343531a0. [DOI] [PubMed] [Google Scholar]
- Koide H., Ogita K., Kikkawa U., Nishizuka Y. Isolation and characterization of the epsilon subspecies of protein kinase C from rat brain. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1149–1153. doi: 10.1073/pnas.89.4.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolesnick R. N., Paley A. E. 1,2-Diacylglycerols and phorbol esters stimulate phosphatidylcholine metabolism in GH3 pituitary cells. Evidence for separate mechanisms of action. J Biol Chem. 1987 Jul 5;262(19):9204–9210. [PubMed] [Google Scholar]
- Konno Y., Ohno S., Akita Y., Kawasaki H., Suzuki K. Enzymatic properties of a novel phorbol ester receptor/protein kinase, nPKC. J Biochem. 1989 Oct;106(4):673–678. doi: 10.1093/oxfordjournals.jbchem.a122915. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Markus H. B., Ball E. G. Inhibition of lipolytic processes in rat adipose tissue by antimalaria drugs. Biochim Biophys Acta. 1969 Dec 17;187(4):486–491. doi: 10.1016/0005-2760(69)90045-9. [DOI] [PubMed] [Google Scholar]
- Martiny-Baron G., Kazanietz M. G., Mischak H., Blumberg P. M., Kochs G., Hug H., Marmé D., Schächtele C. Selective inhibition of protein kinase C isozymes by the indolocarbazole Gö 6976. J Biol Chem. 1993 May 5;268(13):9194–9197. [PubMed] [Google Scholar]
- Matsumoto A., Naito M., Itakura H., Ikemoto S., Asaoka H., Hayakawa I., Kanamori H., Aburatani H., Takaku F., Suzuki H. Human macrophage scavenger receptors: primary structure, expression, and localization in atherosclerotic lesions. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9133–9137. doi: 10.1073/pnas.87.23.9133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayer R. J., Marshall L. A. New insights on mammalian phospholipase A2(s); comparison of arachidonoyl-selective and -nonselective enzymes. FASEB J. 1993 Feb 1;7(2):339–348. doi: 10.1096/fasebj.7.2.8440410. [DOI] [PubMed] [Google Scholar]
- McFARLANE A. S. Efficient trace-labelling of proteins with iodine. Nature. 1958 Jul 5;182(4627):53–53. doi: 10.1038/182053a0. [DOI] [PubMed] [Google Scholar]
- Mizuno K., Kubo K., Saido T. C., Akita Y., Osada S., Kuroki T., Ohno S., Suzuki K. Structure and properties of a ubiquitously expressed protein kinase C, nPKC delta. Eur J Biochem. 1991 Dec 18;202(3):931–940. doi: 10.1111/j.1432-1033.1991.tb16453.x. [DOI] [PubMed] [Google Scholar]
- Mizuno K., Saido T. C., Ohno S., Tamaoki T., Suzuki K. Staurosporine-related compounds, K252a and UCN-01, inhibit both cPKC and nPKC. FEBS Lett. 1993 Sep 13;330(2):114–116. doi: 10.1016/0014-5793(93)80254-r. [DOI] [PubMed] [Google Scholar]
- Mori S., Morisaki N., Saito Y., Yoshida S. Metabolism of acetylated low density lipoproteins by monocyte-derived macrophages from patients with Werner's syndrome. Arteriosclerosis. 1989 Sep-Oct;9(5):644–649. doi: 10.1161/01.atv.9.5.644. [DOI] [PubMed] [Google Scholar]
- Mori S., Yokote K., Morisaki N., Saito Y., Yoshida S. Inheritable abnormal lipoprotein metabolism in Werner's syndrome similar to familial hypercholesterolaemia. Eur J Clin Invest. 1990 Apr;20(2):137–142. doi: 10.1111/j.1365-2362.1990.tb02260.x. [DOI] [PubMed] [Google Scholar]
- Morisaki N., Kanzaki T., Fujiyama Y., Osawa I., Shirai K., Matsuoka N., Saito Y., Yoshida S. Metabolism of n-3 polyunsaturated fatty acids and modification of phospholipids in cultured rabbit aortic smooth muscle cells. J Lipid Res. 1985 Aug;26(8):930–939. [PubMed] [Google Scholar]
- Morisaki N., Lindsey J. A., Stitts J. M., Zhang H., Cornwell D. G. Fatty acid metabolism and cell proliferation. V. Evaluation of pathways for the generation of lipid peroxides. Lipids. 1984 Jun;19(6):381–394. doi: 10.1007/BF02537399. [DOI] [PubMed] [Google Scholar]
- Morisaki N., Shinomiya M., Mizobuchi M., Fujiyama Y., Sasaki N., Shirai K., Matsuoka N., Saito Y., Kumagai A. Lipid metabolism in the aorta and the brain microvessels of rabbits on high cholesterol diet. Artery. 1982;11(3):225–237. [PubMed] [Google Scholar]
- Morisaki N., Tomei L. D., Milo G. E., Cornwell D. G. Role of prostanoids and lipid peroxides as mediators of the 12-O-tetradecanoylphorbol-13-acetate effect on cell growth. Lipids. 1985 Sep;20(9):602–610. doi: 10.1007/BF02534286. [DOI] [PubMed] [Google Scholar]
- Nagelkerke J. F., Barto K. P., van Berkel T. J. In vivo and in vitro uptake and degradation of acetylated low density lipoprotein by rat liver endothelial, Kupffer, and parenchymal cells. J Biol Chem. 1983 Oct 25;258(20):12221–12227. [PubMed] [Google Scholar]
- Nam K. Y., Morino A., Kimura S., Fujiki H., Imanishi Y. Modulation of phospholipase A2 activity by the tumour promoters phorbol esters and teleocidin. Biochem J. 1990 May 15;268(1):169–173. doi: 10.1042/bj2680169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992 Oct 23;258(5082):607–614. doi: 10.1126/science.1411571. [DOI] [PubMed] [Google Scholar]
- Ohno S., Akita Y., Hata A., Osada S., Kubo K., Konno Y., Akimoto K., Mizuno K., Saido T., Kuroki T. Structural and functional diversities of a family of signal transducing protein kinases, protein kinase C family; two distinct classes of PKC, conventional cPKC and novel nPKC. Adv Enzyme Regul. 1991;31:287–303. doi: 10.1016/0065-2571(91)90018-h. [DOI] [PubMed] [Google Scholar]
- Ohuchi K., Levine L. Stimulation of prostaglandin synthesis by tumor-promoting phorbol-12, 13-diesters in canine kidney (MDCK) cells. Cycloheximide inhibits the stimulated prostaglandin synthesis, deacylation of lipids, and morphological changes. J Biol Chem. 1978 Jul 10;253(13):4783–4790. [PubMed] [Google Scholar]
- Oishi K., Zheng B., Kuo J. F. Inhibition of Na,K-ATPase and sodium pump by protein kinase C regulators sphingosine, lysophosphatidylcholine, and oleic acid. J Biol Chem. 1990 Jan 5;265(1):70–75. [PubMed] [Google Scholar]
- Panganamala R. V., Cornwell D. G. The effects of vitamin E on arachidonic acid metabolism. Ann N Y Acad Sci. 1982;393:376–391. doi: 10.1111/j.1749-6632.1982.tb31277.x. [DOI] [PubMed] [Google Scholar]
- Parthasarathy S., Steinbrecher U. P., Barnett J., Witztum J. L., Steinberg D. Essential role of phospholipase A2 activity in endothelial cell-induced modification of low density lipoprotein. Proc Natl Acad Sci U S A. 1985 May;82(9):3000–3004. doi: 10.1073/pnas.82.9.3000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pitas R. E. Expression of the acetyl low density lipoprotein receptor by rabbit fibroblasts and smooth muscle cells. Up-regulation by phorbol esters. J Biol Chem. 1990 Jul 25;265(21):12722–12727. [PubMed] [Google Scholar]
- Saido T. C., Mizuno K., Konno Y., Osada S., Ohno S., Suzuki K. Purification and characterization of protein kinase C epsilon from rabbit brain. Biochemistry. 1992 Jan 21;31(2):482–490. doi: 10.1021/bi00117a026. [DOI] [PubMed] [Google Scholar]
- Saito Y., Bujo H., Morisaki N., Shirai K., Yoshida S. Proliferation and LDL binding of cultured intimal smooth muscle cells from rabbits. Atherosclerosis. 1988 Feb;69(2-3):161–164. doi: 10.1016/0021-9150(88)90010-x. [DOI] [PubMed] [Google Scholar]
- Sherr C. J., Rettenmier C. W., Sacca R., Roussel M. F., Look A. T., Stanley E. R. The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell. 1985 Jul;41(3):665–676. doi: 10.1016/s0092-8674(85)80047-7. [DOI] [PubMed] [Google Scholar]
- Shibanuma M., Kuroki T., Nose K. Effects of the protein kinase C inhibitor H-7 and calmodulin antagonist W-7 on superoxide production in growing and resting human histiocytic leukemia cells (U937). Biochem Biophys Res Commun. 1987 May 14;144(3):1317–1323. doi: 10.1016/0006-291x(87)91454-9. [DOI] [PubMed] [Google Scholar]
- Shier W. T., Baldwin J. H., Nilsen-Hamilton M., Hamilton R. T., Thanassi N. M. Regulation of guanylate and adenylate cyclase activities by lysolecithin. Proc Natl Acad Sci U S A. 1976 May;73(5):1586–1590. doi: 10.1073/pnas.73.5.1586. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tamaoki T., Nomoto H., Takahashi I., Kato Y., Morimoto M., Tomita F. Staurosporine, a potent inhibitor of phospholipid/Ca++dependent protein kinase. Biochem Biophys Res Commun. 1986 Mar 13;135(2):397–402. doi: 10.1016/0006-291x(86)90008-2. [DOI] [PubMed] [Google Scholar]
- Volwerk J. J., Pieterson W. A., de Haas G. H. Histidine at the active site of phospholipase A2. Biochemistry. 1974 Mar 26;13(7):1446–1454. doi: 10.1021/bi00704a020. [DOI] [PubMed] [Google Scholar]
- Voyta J. C., Via D. P., Butterfield C. E., Zetter B. R. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J Cell Biol. 1984 Dec;99(6):2034–2040. doi: 10.1083/jcb.99.6.2034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weltzien H. U. Cytolytic and membrane-perturbing properties of lysophosphatidylcholine. Biochim Biophys Acta. 1979 Aug 20;559(2-3):259–287. doi: 10.1016/0304-4157(79)90004-2. [DOI] [PubMed] [Google Scholar]
