Abstract
Calpain autolyses in the presence of Ca2+. In the case of m-calpain (80 + 30 kDa) the first product is an 80 + 18 kDa species which has an intact large subunit and the C-terminal Ca(2+)-binding domain of the small subunit. It was possible to bind E64 into the active site of calpain in the presence of Ca2+ before cleavage of either calpain subunit. This suggests that the active site is functional before any autolysis has occurred and that calpain is not a proenzyme. Prolonged autolysis generates several fragments including a 42 kDa active-site domain fragment that showed no proteolytic activity and Ca(2+)-binding domain fragments. Some of the Ca(2+)-binding domain fragments were found to exist as heterodimers (23 + 18 kDa and 22 + 18 kDa), with the Ca(2+)-binding domain of the large subunit interacting with the Ca(2+)-binding domain of the small subunit. These species were true heterodimers, as they showed co-elution of the two Ca(2+)-binding domains on ion-exchange and gel-filtration chromatography, and immunoprecipitation of both polypeptides with an antiserum specific for the small-subunit Ca(2+)-binding domain. The generation of the dimer species after only 15 min autolysis suggests that the interaction between the Ca(2+)-binding domains is present in the native calpain structure. The interaction of calpain with calpastatin was investigated using an assay based on binding to calpastatin-Sepharose and a competitive binding assay. Calpain, active-site-blocked calpain and calpain fragments generated by autolysis were studied. Calpain bound to calpastatin in the presence of Ca2+; however, the isolated active-site-containing 80 kDa large subunit (proteolytically inactive), a 42 kDa active-site-containing fragment (proteolytically inactive) and Ca(2+)-binding domain fragments of calpain did not. Active-site-blocked calpain bound to calpastatin, but with an affinity reduced by approximately two orders of magnitude when compared with native calpain.
Full text
PDF![135](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae48/1137665/9d708952591a/biochemj00099-0134.png)
![136](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae48/1137665/3e91f88ef8c0/biochemj00099-0135.png)
![137](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae48/1137665/f210364de5c1/biochemj00099-0136.png)
![138](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae48/1137665/444aa850bf1d/biochemj00099-0137.png)
![139](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae48/1137665/f61e517cb2ad/biochemj00099-0138.png)
![140](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae48/1137665/d83d4549198a/biochemj00099-0139.png)
![141](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae48/1137665/1a93f16d8fb3/biochemj00099-0140.png)
![142](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae48/1137665/78f48130476a/biochemj00099-0141.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cong J., Goll D. E., Peterson A. M., Kapprell H. P. The role of autolysis in activity of the Ca2+-dependent proteinases (mu-calpain and m-calpain). J Biol Chem. 1989 Jun 15;264(17):10096–10103. [PubMed] [Google Scholar]
- Coolican S. A., Haiech J., Hathaway D. R. The role of subunit autolysis in activation of smooth muscle Ca2+-dependent proteases. J Biol Chem. 1986 Mar 25;261(9):4170–4176. [PubMed] [Google Scholar]
- Cottin P., Vidalenc P. L., Merdaci N., Ducastaing A. Evidence for non-competitive inhibition between two calcium-dependent activated neutral proteinases and their specific inhibitor. Biochim Biophys Acta. 1983 Mar 16;743(2):299–302. doi: 10.1016/0167-4838(83)90227-3. [DOI] [PubMed] [Google Scholar]
- Crawford C., Brown N. R., Willis A. C. Investigation of the structural basis of the interaction of calpain II with phospholipid and with carbohydrate. Biochem J. 1990 Jan 15;265(2):575–579. doi: 10.1042/bj2650575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crawford C., Willis A. C., Gagnon J. The effects of autolysis on the structure of chicken calpain II. Biochem J. 1987 Dec 1;248(2):579–588. doi: 10.1042/bj2480579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Croall D. E., DeMartino G. N. Calcium-activated neutral protease (calpain) system: structure, function, and regulation. Physiol Rev. 1991 Jul;71(3):813–847. doi: 10.1152/physrev.1991.71.3.813. [DOI] [PubMed] [Google Scholar]
- DeMartino G. N., Huff C. A., Croall D. E. Autoproteolysis of the small subunit of calcium-dependent protease II activates and regulates protease activity. J Biol Chem. 1986 Sep 15;261(26):12047–12052. [PubMed] [Google Scholar]
- Imajoh S., Aoki K., Ohno S., Emori Y., Kawasaki H., Sugihara H., Suzuki K. Molecular cloning of the cDNA for the large subunit of the high-Ca2+-requiring form of human Ca2+-activated neutral protease. Biochemistry. 1988 Oct 18;27(21):8122–8128. doi: 10.1021/bi00421a022. [DOI] [PubMed] [Google Scholar]
- Imajoh S., Kawasaki H., Suzuki K. Limited autolysis of calcium-activated neutral protease (CANP): reduction of the Ca2+-requirement is due to the NH2-terminal processing of the large subunit. J Biochem. 1986 Sep;100(3):633–642. doi: 10.1093/oxfordjournals.jbchem.a121755. [DOI] [PubMed] [Google Scholar]
- Inomata M., Imahori K., Kawashima S. Autolytic activation of calcium-activated neutral protease. Biochem Biophys Res Commun. 1986 Jul 31;138(2):638–643. doi: 10.1016/s0006-291x(86)80544-7. [DOI] [PubMed] [Google Scholar]
- Kapprell H. P., Goll D. E. Effect of Ca2+ on binding of the calpains to calpastatin. J Biol Chem. 1989 Oct 25;264(30):17888–17896. [PubMed] [Google Scholar]
- Kawasaki H., Emori Y., Imajoh-Ohmi S., Minami Y., Suzuki K. Identification and characterization of inhibitory sequences in four repeating domains of the endogenous inhibitor for calcium-dependent protease. J Biochem. 1989 Aug;106(2):274–281. doi: 10.1093/oxfordjournals.jbchem.a122844. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Maki M., Takano E., Mori H., Sato A., Murachi T., Hatanaka M. All four internally repetitive domains of pig calpastatin possess inhibitory activities against calpains I and II. FEBS Lett. 1987 Oct 19;223(1):174–180. doi: 10.1016/0014-5793(87)80531-8. [DOI] [PubMed] [Google Scholar]
- Maki M., Takano E., Osawa T., Ooi T., Murachi T., Hatanaka M. Analysis of structure-function relationship of pig calpastatin by expression of mutated cDNAs in Escherichia coli. J Biol Chem. 1988 Jul 25;263(21):10254–10261. [PubMed] [Google Scholar]
- Mellgren R. L., Nettey M. S., Mericle M. T., Renno W., Lane R. D. An improved purification procedure for calpastatin, the inhibitor protein specific for the intracellular calcium-dependent proteinases, calpains. Prep Biochem. 1988;18(2):183–197. doi: 10.1080/00327488808062520. [DOI] [PubMed] [Google Scholar]
- Murachi T., Tanaka K., Hatanaka M., Murakami T. Intracellular Ca2+-dependent protease (calpain) and its high-molecular-weight endogenous inhibitor (calpastatin). Adv Enzyme Regul. 1980;19:407–424. doi: 10.1016/0065-2571(81)90026-1. [DOI] [PubMed] [Google Scholar]
- Nakamura M., Inomata M., Hayashi M., Imahori K., Kawashima S. Purification and characterization of an inhibitor of calcium-activated neutral protease from rabbit skeletal muscle: purification of 50,000-dalton inhibitor. J Biochem. 1984 Nov;96(5):1399–1407. doi: 10.1093/oxfordjournals.jbchem.a134968. [DOI] [PubMed] [Google Scholar]
- Nishimura T., Goll D. E. Binding of calpain fragments to calpastatin. J Biol Chem. 1991 Jun 25;266(18):11842–11850. [PubMed] [Google Scholar]
- Parkes C., Kembhavi A. A., Barrett A. J. Calpain inhibition by peptide epoxides. Biochem J. 1985 Sep 1;230(2):509–516. doi: 10.1042/bj2300509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothbard J. B., Fernandez R., Schoolnik G. K. Strain-specific and common epitopes of gonococcal pili. J Exp Med. 1984 Jul 1;160(1):208–221. doi: 10.1084/jem.160.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakihama T., Kakidani H., Zenita K., Yumoto N., Kikuchi T., Sasaki T., Kannagi R., Nakanishi S., Ohmori M., Takio K. A putative Ca2+-binding protein: structure of the light subunit of porcine calpain elucidated by molecular cloning and protein sequence analysis. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6075–6079. doi: 10.1073/pnas.82.18.6075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Storer A. C., Cornish-Bowden A. Concentration of MgATP2- and other ions in solution. Calculation of the true concentrations of species present in mixtures of associating ions. Biochem J. 1976 Oct 1;159(1):1–5. doi: 10.1042/bj1590001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki K., Tsuji S., Ishiura S., Kimura Y., Kubota S., Imahori K. Autolysis of calcium-activated neutral protease of chicken skeletal muscle. J Biochem. 1981 Dec;90(6):1787–1793. doi: 10.1093/oxfordjournals.jbchem.a133656. [DOI] [PubMed] [Google Scholar]
- Takano E., Maki M., Mori H., Hatanaka M., Marti T., Titani K., Kannagi R., Ooi T., Murachi T. Pig heart calpastatin: identification of repetitive domain structures and anomalous behavior in polyacrylamide gel electrophoresis. Biochemistry. 1988 Mar 22;27(6):1964–1972. doi: 10.1021/bi00406a024. [DOI] [PubMed] [Google Scholar]