Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Nov 15;296(Pt 1):169–174. doi: 10.1042/bj2960169

Stimulation of secretion in permeabilized PC12 cells by adenosine 5'-[gamma-thio]triphosphate: possible involvement of nucleoside diphosphate kinase.

N D Vu 1, P D Wagner 1
PMCID: PMC1137670  PMID: 8250839

Abstract

The addition of Ca2+, adenosine 5'-[gamma-thio]triphosphate (ATP[S]) or guanosine 5'-[gamma-thio]triphosphate (GTP[S]) to digitonin-permeabilized PC12 cells stimulates noradrenaline secretion. Both ATP[S] and GTP[S] stimulate release in the absence of Ca2+. Whereas ADP and adenosine 5'-[beta gamma-imido]triphosphate inhibited ATP[S]-stimulated release, they did not inhibit Ca(2+)-stimulated release even in the absence of added ATP. This suggests that the kinase which uses ATP[S] to induce secretion may not play an essential role in Ca(2+)-stimulated release. As GTP[S]-stimulated and ATP[S]-stimulated secretions were not additive, it seemed possible that stimulation by ATP[S] might in part result from the thiophosphorylation of GDP by nucleoside-diphosphate (NDP) kinase to form GTP[S]. The following results are consistent with this possibility. (1) A low concentration of GDP increased ATP[S]-stimulated secretion, but not GTP[S]-stimulated or Ca(2+)-stimulated secretion. (2) A variety of ribo- and deoxyribo-nucleoside di- and tri-phosphates inhibited ATP[S]-stimulated secretion, but not GTP[S]-stimulated or Ca(2+)-stimulated secretion. Thus, like NDP kinase, the kinase which uses ATP[S] to cause noradrenaline release appears to have a very low specificity for ATP. (3) Incubation of permeabilized cells in a sucrose-containing buffer resulted in the preferential loss of ATP[S]-stimulated secretion and a decrease in the level of NDP kinase. The addition of rat liver NDP kinase to those depleted cells partially restored ATP[S]-stimulated secretion.

Full text

PDF
169

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carroll A. G., Rhoads A. R., Wagner P. D. Hydrolysis-resistant GTP analogs stimulate catecholamine release from digitonin-permeabilized PC12 cells. J Neurochem. 1990 Sep;55(3):930–936. doi: 10.1111/j.1471-4159.1990.tb04580.x. [DOI] [PubMed] [Google Scholar]
  2. Edelman A. M., Blumenthal D. K., Krebs E. G. Protein serine/threonine kinases. Annu Rev Biochem. 1987;56:567–613. doi: 10.1146/annurev.bi.56.070187.003031. [DOI] [PubMed] [Google Scholar]
  3. Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
  4. Gomperts B. D. GE: a GTP-binding protein mediating exocytosis. Annu Rev Physiol. 1990;52:591–606. doi: 10.1146/annurev.ph.52.030190.003111. [DOI] [PubMed] [Google Scholar]
  5. Greene L. A., Rein G. Release, storage and uptake of catecholamines by a clonal cell line of nerve growth factor (NGF) responsive pheo-chromocytoma cells. Brain Res. 1977 Jul 1;129(2):247–263. doi: 10.1016/0006-8993(77)90005-1. [DOI] [PubMed] [Google Scholar]
  6. Hay J. C., Martin T. F. Resolution of regulated secretion into sequential MgATP-dependent and calcium-dependent stages mediated by distinct cytosolic proteins. J Cell Biol. 1992 Oct;119(1):139–151. doi: 10.1083/jcb.119.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Inoue K., Nakazawa K., Fujimori K., Takanaka A. Extracellular adenosine 5'-triphosphate-evoked norepinephrine secretion not relating to voltage-gated Ca channels in pheochromocytoma PC12 cells. Neurosci Lett. 1989 Dec 4;106(3):294–299. doi: 10.1016/0304-3940(89)90179-1. [DOI] [PubMed] [Google Scholar]
  8. Jakobs K. H., Wieland T. Evidence for receptor-regulated phosphotransfer reactions involved in activation of the adenylate cyclase inhibitory G protein in human platelet membranes. Eur J Biochem. 1989 Jul 15;183(1):115–121. doi: 10.1111/j.1432-1033.1989.tb14903.x. [DOI] [PubMed] [Google Scholar]
  9. Kikkawa S., Takahashi K., Takahashi K., Shimada N., Ui M., Kimura N., Katada T. Conversion of GDP into GTP by nucleoside diphosphate kinase on the GTP-binding proteins. J Biol Chem. 1990 Dec 15;265(35):21536–21540. [PubMed] [Google Scholar]
  10. Kimura N., Shimada N. Direct interaction between membrane-associated nucleoside diphosphate kinase and GTP-binding protein(Gs), and its regulation by hormones and guanine nucleotides. Biochem Biophys Res Commun. 1988 Feb 29;151(1):248–256. doi: 10.1016/0006-291x(88)90586-4. [DOI] [PubMed] [Google Scholar]
  11. Kimura N., Shimada N. Evidence for complex formation between GTP binding protein(Gs) and membrane-associated nucleoside diphosphate kinase. Biochem Biophys Res Commun. 1990 Apr 16;168(1):99–106. doi: 10.1016/0006-291x(90)91680-q. [DOI] [PubMed] [Google Scholar]
  12. Kimura N., Shimada N. GDP does not mediate but rather inhibits hormonal signal to adenylate cyclase. J Biol Chem. 1983 Feb 25;258(4):2278–2283. [PubMed] [Google Scholar]
  13. Kimura N., Shimada N. Membrane-associated nucleoside diphosphate kinase from rat liver. Purification, characterization, and comparison with cytosolic enzyme. J Biol Chem. 1988 Apr 5;263(10):4647–4653. [PubMed] [Google Scholar]
  14. Kimura N., Shimada N., Tsubokura M. Adenosine 5'-(beta, gamma-imino)triphosphate and guanosine 5'-O-(2-thiodiphosphate) do not necessarily provide non-phosphorylating conditions in adenylate cyclase studies. Biochem Biophys Res Commun. 1985 Feb 15;126(3):983–991. doi: 10.1016/0006-291x(85)90282-7. [DOI] [PubMed] [Google Scholar]
  15. Matthies H. J., Palfrey H. C., Miller R. J. Calmodulin- and protein phosphorylation-independent release of catecholamines from PC-12 cells. FEBS Lett. 1988 Mar 14;229(2):238–242. doi: 10.1016/0014-5793(88)81132-3. [DOI] [PubMed] [Google Scholar]
  16. Meldolesi J., Huttner W. B., Tsien R. Y., Pozzan T. Free cytoplasmic Ca2+ and neurotransmitter release: studies on PC12 cells and synaptosomes exposed to alpha-latrotoxin. Proc Natl Acad Sci U S A. 1984 Jan;81(2):620–624. doi: 10.1073/pnas.81.2.620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ohtsuki K., Ikeuchi T., Yokoyama M. Characterization of nucleoside-diphosphate kinase-associated guanine nucleotide-binding proteins from HeLa S3 cells. Biochim Biophys Acta. 1986 Jul 16;882(3):322–330. doi: 10.1016/0304-4165(86)90254-0. [DOI] [PubMed] [Google Scholar]
  18. Ohtsuki K., Yokoyama M., Uesaka H. Physiological correlation between nucleoside-diphosphate kinases and the 21-kDa guanine-nucleotide binding proteins copurified with the enzymes from the cell membrane fractions of Ehrlich ascites tumor cells. Biochim Biophys Acta. 1987 Jul 29;929(3):231–238. doi: 10.1016/0167-4889(87)90248-5. [DOI] [PubMed] [Google Scholar]
  19. Otero A. S., Breitwieser G. E., Szabo G. Activation of muscarinic potassium currents by ATP gamma S in atrial cells. Science. 1988 Oct 21;242(4877):443–445. doi: 10.1126/science.3051383. [DOI] [PubMed] [Google Scholar]
  20. Peppers S. C., Holz R. W. Catecholamine secretion from digitonin-treated PC12 cells. Effects of Ca2+, ATP, and protein kinase C activators. J Biol Chem. 1986 Nov 5;261(31):14665–14669. [PubMed] [Google Scholar]
  21. Schäfer T., Karli U. O., Gratwohl E. K., Schweizer F. E., Burger M. M. Digitonin-permeabilized cells are exocytosis competent. J Neurochem. 1987 Dec;49(6):1697–1707. doi: 10.1111/j.1471-4159.1987.tb02427.x. [DOI] [PubMed] [Google Scholar]
  22. Seifert R., Rosenthal W., Schultz G., Wieland T., Gierschick P., Jakobs K. H. The role of nucleoside-diphosphate kinase reactions in G protein activation of NADPH oxidase by guanine and adenine nucleotides. Eur J Biochem. 1988 Jul 15;175(1):51–55. doi: 10.1111/j.1432-1033.1988.tb14165.x. [DOI] [PubMed] [Google Scholar]
  23. Sela D., Ram E., Atlas D. ATP receptor. A putative receptor-operated channel in PC-12 cells. J Biol Chem. 1991 Sep 25;266(27):17990–17994. [PubMed] [Google Scholar]
  24. Wagner P. D., Vu N. D. Regulation of norepinephrine secretion in permeabilized PC12 cells by Ca2(+)-stimulated phosphorylation. Effects of protein phosphatases and phosphatase inhibitors. J Biol Chem. 1990 Jun 25;265(18):10352–10357. [PubMed] [Google Scholar]
  25. Wagner P. D., Vu N. D. Thiophosphorylation causes Ca2+-independent norepinephrine secretion from permeabilized PC12 cells. J Biol Chem. 1989 Nov 25;264(33):19614–19620. [PubMed] [Google Scholar]
  26. Wieland T., Jakobs K. H. Receptor-regulated formation of GTP[gamma S] with subsequent persistent Gs-protein activation in membranes of human platelets. FEBS Lett. 1989 Mar 13;245(1-2):189–193. doi: 10.1016/0014-5793(89)80219-4. [DOI] [PubMed] [Google Scholar]
  27. Yang Y. C., Vu N. D., Wagner P. D. Guanine nucleotide stimulation of norepinephrine secretion from permeabilized PC12 cells: effects of Mg2+, other nucleotide triphosphates and N-ethylmaleimide. Biochim Biophys Acta. 1992 Apr 7;1134(3):285–291. doi: 10.1016/0167-4889(92)90188-h. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES