Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Nov 15;296(Pt 1):225–230. doi: 10.1042/bj2960225

Cloning, characterization and import studies on protochlorophyllide reductase from wheat (Triticum aestivum).

G R Teakle 1, W T Griffiths 1
PMCID: PMC1137677  PMID: 8250847

Abstract

A full-length protochlorophyllide reductase clone (pWR5) has been isolated from a dark-grown wheat (Triticum aestivum) cDNA library generated in the phage vector lambda gt10. Comparison of the sequence of pWR5 with published sequences indicates a high degree of conservation of the structure of the mature protein amongst species but with the structure of the transit peptide less highly conserved. Within the cereals, the structure of the complete preprotein shows a remarkable degree of sequence homology (98% between barley and wheat). In vitro expression of pWR5 generates a preprotein of the expected molecular mass, approx. 41 kDa. Isolated pea chloroplasts can import, process and locate the mature reductase to the thylakoid membranes. From analysis of the CNBr-cleavage fragments of the N-[3H]phenylmaleimide-treated enzyme, the substrate-protected cysteine group in the enzyme is tentatively identified as Cys-296.

Full text

PDF
225

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apel K., Kloppstech K. The plastid membranes of barley (Hordeum vulgare). Light-induced appearance of mRNA coding for the apoprotein of the light-harvesting chlorophyll a/b protein. Eur J Biochem. 1978 Apr 17;85(2):581–588. doi: 10.1111/j.1432-1033.1978.tb12273.x. [DOI] [PubMed] [Google Scholar]
  2. Benli M., Schulz R., Apel K. Effect of light on the NADPH-protochlorophyllide oxidoreductase of Arabidopsis thaliana. Plant Mol Biol. 1991 Apr;16(4):615–625. doi: 10.1007/BF00023426. [DOI] [PubMed] [Google Scholar]
  3. Darrah P. M., Kay S. A., Teakle G. R., Griffiths W. T. Cloning and sequencing of protochlorophyllide reductase. Biochem J. 1990 Feb 1;265(3):789–798. doi: 10.1042/bj2650789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Griffiths W. T. Reconstitution of chlorophyllide formation by isolated etioplast membranes. Biochem J. 1978 Sep 15;174(3):681–692. doi: 10.1042/bj1740681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Griffiths W. T. Substrate-specificity studies on protochlorophyllide reductase in barley (Hordeum vulgare) etioplast membranes. Biochem J. 1980 Jan 15;186(1):267–278. doi: 10.1042/bj1860267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. James H. E., Bartling D., Musgrove J. E., Kirwin P. M., Herrmann R. G., Robinson C. Transport of proteins into chloroplasts. Import and maturation of precursors to the 33-, 23-, and 16-kDa proteins of the photosynthetic oxygen-evolving complex. J Biol Chem. 1989 Nov 25;264(33):19573–19576. [PubMed] [Google Scholar]
  7. Joyard J., Block M., Pineau B., Albrieux C., Douce R. Envelope membranes from mature spinach chloroplasts contain a NADPH:protochlorophyllide reductase on the cytosolic side of the outer membrane. J Biol Chem. 1990 Dec 15;265(35):21820–21827. [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Mapleston R. E., Griffiths W. T. Light modulation of the activity of protochlorophyllide reductase. Biochem J. 1980 Jul 1;189(1):125–133. doi: 10.1042/bj1890125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Oliver R. P., Griffiths W. T. Covalent labelling of the NADPH: protochlorophyllide oxidoreductase from etioplast membranes with [3H]N-phenylmaleimide. Biochem J. 1981 Apr 1;195(1):93–101. doi: 10.1042/bj1950093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Oliver R. P., Griffiths W. T. Identification of the polypeptides of NADPH--protochlorophyllide oxidoreductase. Biochem J. 1980 Oct 1;191(1):277–280. doi: 10.1042/bj1910277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ploug M., Jensen A. L., Barkholt V. Determination of amino acid compositions and NH2-terminal sequences of peptides electroblotted onto PVDF membranes from tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis: application to peptide mapping of human complement component C3. Anal Biochem. 1989 Aug 15;181(1):33–39. doi: 10.1016/0003-2697(89)90390-4. [DOI] [PubMed] [Google Scholar]
  13. Porter T. D. An unusual yet strongly conserved flavoprotein reductase in bacteria and mammals. Trends Biochem Sci. 1991 Apr;16(4):154–158. doi: 10.1016/0968-0004(91)90059-5. [DOI] [PubMed] [Google Scholar]
  14. Rice D. W., Schulz G. E., Guest J. R. Structural relationship between glutathione reductase and lipoamide dehydrogenase. J Mol Biol. 1984 Apr 15;174(3):483–496. doi: 10.1016/0022-2836(84)90332-2. [DOI] [PubMed] [Google Scholar]
  15. Robinson C., Ellis R. J. Transport of proteins into chloroplasts. The effect of incorporation of amino acid analogues on the import and processing of chloroplast polypeptides. Eur J Biochem. 1985 Oct 1;152(1):67–73. doi: 10.1111/j.1432-1033.1985.tb09164.x. [DOI] [PubMed] [Google Scholar]
  16. Santel H. J., Apel K. The protochlorophyllide holochrome of barley (Hordeum vulgare L.). The effect of light on the NADPH:protochlorophyllide oxidoreductase. Eur J Biochem. 1981 Nov;120(1):95–103. doi: 10.1111/j.1432-1033.1981.tb05674.x. [DOI] [PubMed] [Google Scholar]
  17. Schulz R., Steinmüller K., Klaas M., Forreiter C., Rasmussen S., Hiller C., Apel K. Nucleotide sequence of a cDNA coding for the NADPH-protochlorophyllide oxidoreductase (PCR) of barley (Hordeum vulgare L.) and its expression in Escherichia coli. Mol Gen Genet. 1989 Jun;217(2-3):355–361. doi: 10.1007/BF02464904. [DOI] [PubMed] [Google Scholar]
  18. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  19. Spano A. J., He Z., Michel H., Hunt D. F., Timko M. P. Molecular cloning, nuclear gene structure, and developmental expression of NADPH: protochlorophyllide oxidoreductase in pea (Pisum sativum L.). Plant Mol Biol. 1992 Mar;18(5):967–972. doi: 10.1007/BF00019210. [DOI] [PubMed] [Google Scholar]
  20. Spano A. J., He Z., Timko M. P. NADPH: protochlorophyllide oxidoreductases in white pine (Pinus strobus) and loblolly pine (P. taeda). Evidence for light and developmental regulation of expression and conservation in gene organization and protein structure between angiosperms and gymnosperms. Mol Gen Genet. 1992 Dec;236(1):86–95. [PubMed] [Google Scholar]
  21. von Heijne G., Nishikawa K. Chloroplast transit peptides. The perfect random coil? FEBS Lett. 1991 Jan 14;278(1):1–3. doi: 10.1016/0014-5793(91)80069-f. [DOI] [PubMed] [Google Scholar]
  22. von Heijne G., Steppuhn J., Herrmann R. G. Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem. 1989 Apr 1;180(3):535–545. doi: 10.1111/j.1432-1033.1989.tb14679.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES