Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Nov 15;296(Pt 1):265–270. doi: 10.1042/bj2960265

Activation of a peroxisome-proliferating catabolite of cholic acid to its CoA ester.

T Nishimaki-Mogami 1, A Takahashi 1, Y Hayashi 1
PMCID: PMC1137683  PMID: 8250853

Abstract

We have shown that a microbial cholic acid catabolite (4R)-4-(2,3,4,6,6a beta,7,8,9,9a alpha,9b beta-decahydro-6a beta-methyl-3-oxo- 1H-cyclopenta[f]quinolin-7 beta-yl)valeric acid (DCQVA), is a potent peroxisome proliferator. In this paper a possible key stage in DCQVA metabolism, the activation of DCQVA to its CoA ester, has been investigated in rat liver microsomes and particulate fractions. The microsomal reaction was dependent on CoA, ATP, DCQVA (0.2-1 mM) and protein content. The reaction was decreased by storage at 4 degrees C, preincubation of microsomes at 37 degrees C for 5 min, or inclusion of Triton X-100 in the reaction mixture. Such treatments also enhanced generation of long-chain fatty acyl-CoAs, as determined by h.p.l.c. analysis. The same effect was caused by exposing the microsomes to phospholipase A2, suggesting that endogenous fatty acids may compete with DCQVA for esterification with CoA. Subcellular fractionation of rat liver demonstrated that the activity of DCQVA-CoA synthesis was localized predominantly in the microsomal fraction, in contrast to long-chain fatty acyl-CoA synthetase, which was distributed among all particulate fractions. Administration of clofibrate of rats did not affect the distribution of DCQVA-CoA synthesis activity. In contrast to a 2-fold induction of long-chain fatty acyl-CoA synthetase by clofibrate treatment, the activity of DCQVA-CoA synthesis in the microsomal fraction decreased by 80%. These results suggest that DCQVA is activated by an enzyme distinct from long-chain fatty acyl-CoA synthetase. The resulting perturbation of fatty acid metabolism may be involved in the mechanism whereby DCQVA causes peroxisome proliferation.

Full text

PDF
265

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aarsland A., Berge R. K., Bremer J., Aarsaether N. The hypolipidemic peroxisome-proliferating drug, bis(carboxymethylthio)-1.10 decane, a dicarboxylic metabolite of tiadenol, is activated to an acylcoenzyme A thioester. Biochim Biophys Acta. 1990 Feb 26;1033(2):176–183. doi: 10.1016/0304-4165(90)90009-l. [DOI] [PubMed] [Google Scholar]
  2. Aarsland A., Berge R. K. Peroxisome proliferating sulphur- and oxy-substituted fatty acid analogues are activated to acyl coenzyme A thioesters. Biochem Pharmacol. 1991 Jan 1;41(1):53–61. doi: 10.1016/0006-2952(91)90010-3. [DOI] [PubMed] [Google Scholar]
  3. Amigo L., McElroy M. C., Morales M. N., Bronfman M. Subcellular distribution and characteristics of ciprofibroyl-CoA synthetase in rat liver. Its possible identity with long-chain acyl-CoA synthetase. Biochem J. 1992 May 15;284(Pt 1):283–287. doi: 10.1042/bj2840283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berge R. K., Aarsland A. Correlation between the cellular level of long-chain acyl-CoA, peroxisomal beta-oxidation, and palmitoyl-CoA hydrolase activity in rat liver. Are the two enzyme systems regulated by a substrate-induced mechanism? Biochim Biophys Acta. 1985 Nov 14;837(2):141–151. doi: 10.1016/0005-2760(85)90237-1. [DOI] [PubMed] [Google Scholar]
  5. Berge R. K., Nilsson A., Husøy A. M. Rapid stimulation of liver palmitoyl-CoA synthetase, carnitine palmitoyltransferase and glycerophosphate acyltransferase compared to peroxisomal beta-oxidation and palmitoyl-CoA hydrolase in rats fed high-fat diets. Biochim Biophys Acta. 1988 Jun 15;960(3):417–426. doi: 10.1016/0005-2760(88)90050-1. [DOI] [PubMed] [Google Scholar]
  6. Berge R. K., Stensland E., Aarsland A., Tsegai G., Osmundsen H., Aarsaether N., Gjellesvik D. R. Induction of cytosolic clofibroyl-CoA hydrolase activity in liver of rats treated with clofibrate. Biochim Biophys Acta. 1987 Mar 13;918(1):60–66. doi: 10.1016/0005-2760(87)90009-9. [DOI] [PubMed] [Google Scholar]
  7. Borrebaek B., Osmundsen H., Christiansen E. N., Bremer J. Increased 4-enoyl-CoA reductase activity in liver mitochondria of rats fed high-fed diets and its effect on fatty acid oxidation and the inhibitory action of pent-4-enoate. FEBS Lett. 1980 Nov 17;121(1):23–24. doi: 10.1016/0014-5793(80)81257-9. [DOI] [PubMed] [Google Scholar]
  8. Bronfman M., Amigo L., Morales M. N. Activation of hypolipidaemic drugs to acyl-coenzyme A thioesters. Biochem J. 1986 Nov 1;239(3):781–784. doi: 10.1042/bj2390781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bronfman M., Orellana A., Morales M. N., Bieri F., Waechter F., Stäubli W., Bentley P. Potentiation of diacylglycerol-activated protein kinase C by acyl-coenzyme A thioesters of hypolipidaemic drugs. Biochem Biophys Res Commun. 1989 Mar 31;159(3):1026–1031. doi: 10.1016/0006-291x(89)92211-0. [DOI] [PubMed] [Google Scholar]
  10. DE DUVE C., PRESSMAN B. C., GIANETTO R., WATTIAUX R., APPELMANS F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955 Aug;60(4):604–617. doi: 10.1042/bj0600604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dommes V., Baumgart C., Kunau W. H. Degradation of unsaturated fatty acids in peroxisomes. Existence of a 2,4-dienoyl-CoA reductase pathway. J Biol Chem. 1981 Aug 25;256(16):8259–8262. [PubMed] [Google Scholar]
  12. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  13. Gibson G. G., Orton T. C., Tamburini P. P. Cytochrome P-450 induction by clofibrate. Purification and properties of a hepatic cytochrome P-450 relatively specific for the 12- and 11-hydroxylation of dodecanoic acid (lauric acid). Biochem J. 1982 Apr 1;203(1):161–168. doi: 10.1042/bj2030161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gordon J. I., Duronio R. J., Rudnick D. A., Adams S. P., Gokel G. W. Protein N-myristoylation. J Biol Chem. 1991 May 15;266(14):8647–8650. [PubMed] [Google Scholar]
  15. Green S. Receptor-mediated mechanisms of peroxisome proliferators. Biochem Pharmacol. 1992 Feb 4;43(3):393–401. doi: 10.1016/0006-2952(92)90554-v. [DOI] [PubMed] [Google Scholar]
  16. Göttlicher M., Widmark E., Li Q., Gustafsson J. A. Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4653–4657. doi: 10.1073/pnas.89.10.4653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Horie S., Ishii H., Suga T. Changes in peroxisomal fatty acid oxidation in the diabetic rat liver. J Biochem. 1981 Dec;90(6):1691–1696. doi: 10.1093/oxfordjournals.jbchem.a133645. [DOI] [PubMed] [Google Scholar]
  18. Issemann I., Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature. 1990 Oct 18;347(6294):645–650. doi: 10.1038/347645a0. [DOI] [PubMed] [Google Scholar]
  19. Jamil H., Hatch G. M., Vance D. E. Evidence that binding of CTP:phosphocholine cytidylyltransferase to membranes in rat hepatocytes is modulated by the ratio of bilayer- to non-bilayer-forming lipids. Biochem J. 1993 Apr 15;291(Pt 2):419–427. doi: 10.1042/bj2910419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kawashima Y., Hirose A., Kozuka H. Modification by clofibric acid of acyl composition of glycerolipids in rat liver. Possible involvement of fatty acid chain elongation and desaturation. Biochim Biophys Acta. 1984 Oct 4;795(3):543–551. doi: 10.1016/0005-2760(84)90184-x. [DOI] [PubMed] [Google Scholar]
  21. Kawashima Y., Horii S., Matsunaga T., Hirose A., Adachi T., Kozuka H. Co-induction by peroxisome proliferators of microsomal 1-acylglycerophosphocholine acyltransferase with peroxisomal beta-oxidation in rat liver. Biochim Biophys Acta. 1989 Sep 25;1005(2):123–129. doi: 10.1016/0005-2760(89)90177-x. [DOI] [PubMed] [Google Scholar]
  22. Kawashima Y., Katoh H., Kozuka H. Sex-related difference in the effect of clofibric acid on induction of two novel long-chain acyl-CoA hydrolases in rat liver. Biochim Biophys Acta. 1982 Jul 20;712(1):48–56. [PubMed] [Google Scholar]
  23. Kuslikis B. I., Vanden Heuvel J. P., Peterson R. E. Lack of evidence for perfluorodecanoyl- or perfluorooctanoyl-coenzyme A formation in male and female rats. J Biochem Toxicol. 1992 Spring;7(1):25–29. doi: 10.1002/jbt.2570070106. [DOI] [PubMed] [Google Scholar]
  24. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  25. Lock E. A., Mitchell A. M., Elcombe C. R. Biochemical mechanisms of induction of hepatic peroxisome proliferation. Annu Rev Pharmacol Toxicol. 1989;29:145–163. doi: 10.1146/annurev.pa.29.040189.001045. [DOI] [PubMed] [Google Scholar]
  26. Miyazawa S., Furuta S., Hashimoto T. Induction of a novel long-chain acyl-CoA hydrolase in rat liver by administration of peroxisome proliferators. Eur J Biochem. 1981 Jul;117(2):425–430. doi: 10.1111/j.1432-1033.1981.tb06356.x. [DOI] [PubMed] [Google Scholar]
  27. Miyazawa S., Hashimoto T., Yokota S. Identity of long-chain acyl-coenzyme A synthetase of microsomes, mitochondria, and peroxisomes in rat liver. J Biochem. 1985 Sep;98(3):723–733. doi: 10.1093/oxfordjournals.jbchem.a135330. [DOI] [PubMed] [Google Scholar]
  28. Mizugaki M., Nishimaki T., Yamamoto H., Sagi M., Yamanaka H. Studies on the metabolism of unsaturated fatty acids. XI. Alterations in the activities of enoyl-CoA hydratase, 3-hydroxyacyl-CoA epimerase and 2,4-dienyl-CoA reductase in rat liver mitochondria and peroxisomes by clofibrate. J Biochem. 1982 Dec;92(6):2051–2054. doi: 10.1093/oxfordjournals.jbchem.a134140. [DOI] [PubMed] [Google Scholar]
  29. Moreau P., Morré D. J. Cell-free transfer of membrane lipids. Evidence for lipid processing. J Biol Chem. 1991 Mar 5;266(7):4329–4333. [PubMed] [Google Scholar]
  30. Nishimaki-Mogami T., Takahashi A., Toyoda K., Hayashi Y. Induction of peroxisomal beta-oxidation by a microbial catabolite of cholic acid in rat liver and cultured rat hepatocytes. Biochem J. 1993 Oct 1;295(Pt 1):217–220. doi: 10.1042/bj2950217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nishimaki-Mogami T., Tanaka A., Minegishi K., Takahashi A. Effect of sorbic acid feeding on peroxisomes and sorboyl-CoA metabolizing enzymes in mouse liver. Selective induction of 2,4-dienoyl-CoA hydratase. Biochem Pharmacol. 1991 Jul 5;42(2):239–246. doi: 10.1016/0006-2952(91)90709-e. [DOI] [PubMed] [Google Scholar]
  32. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992 Oct 23;258(5082):607–614. doi: 10.1126/science.1411571. [DOI] [PubMed] [Google Scholar]
  33. Noy N., Zakim D. Fatty acids bound to unilamellar lipid vesicles as substrates for microsomal acyl-CoA ligase. Biochemistry. 1985 Jul 2;24(14):3521–3525. doi: 10.1021/bi00335a020. [DOI] [PubMed] [Google Scholar]
  34. Osmundsen H., Bremer J., Pedersen J. I. Metabolic aspects of peroxisomal beta-oxidation. Biochim Biophys Acta. 1991 Sep 11;1085(2):141–158. doi: 10.1016/0005-2760(91)90089-z. [DOI] [PubMed] [Google Scholar]
  35. Schepers L., Casteels M., Vamecq J., Parmentier G., Van Veldhoven P. P., Mannaerts G. P. Beta-oxidation of the carboxyl side chain of prostaglandin E2 in rat liver peroxisomes and mitochondria. J Biol Chem. 1988 Feb 25;263(6):2724–2731. [PubMed] [Google Scholar]
  36. Schepers L., Casteels M., Verheyden K., Parmentier G., Asselberghs S., Eyssen H. J., Mannaerts G. P. Subcellular distribution and characteristics of trihydroxycoprostanoyl-CoA synthetase in rat liver. Biochem J. 1989 Jan 1;257(1):221–229. doi: 10.1042/bj2570221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schrock H. L., Gennis R. B. High affinity lipid binding sites on the peripheral membrane enzyme pyruvate oxidase. Specific ligand effects on detergent binding. J Biol Chem. 1977 Sep 10;252(17):5990–5995. [PubMed] [Google Scholar]
  38. Simion F. A., Fleischer B., Fleischer S. Subcellular distribution of cholic acid:coenzyme a ligase and deoxycholic acid:Coenzyme a ligase activities in rat liver. Biochemistry. 1983 Oct 11;22(21):5029–5034. doi: 10.1021/bi00290a023. [DOI] [PubMed] [Google Scholar]
  39. Singh H., Poulos A. Distinct long chain and very long chain fatty acyl CoA synthetases in rat liver peroxisomes and microsomes. Arch Biochem Biophys. 1988 Nov 1;266(2):486–495. doi: 10.1016/0003-9861(88)90281-0. [DOI] [PubMed] [Google Scholar]
  40. Singh I., Lazo O., Dhaunsi G. S., Contreras M. Transport of fatty acids into human and rat peroxisomes. Differential transport of palmitic and lignoceric acids and its implication to X-adrenoleukodystrophy. J Biol Chem. 1992 Jul 5;267(19):13306–13313. [PubMed] [Google Scholar]
  41. Tanaka T., Hosaka K., Hoshimaru M., Numa S. Purification and properties of long-chain acyl-coenzyme-A synthetase from rat liver. Eur J Biochem. 1979 Jul;98(1):165–172. doi: 10.1111/j.1432-1033.1979.tb13173.x. [DOI] [PubMed] [Google Scholar]
  42. Tanaka T., Hosaka K., Numa S. Long-chain acyl-CoA synthetase from rat liver. Methods Enzymol. 1981;71(Pt 100):334–341. doi: 10.1016/0076-6879(81)71042-5. [DOI] [PubMed] [Google Scholar]
  43. Tijburg L. B., Nishimaki-Mogami T., Vance D. E. Evidence that the rate of phosphatidylcholine catabolism is regulated in cultured rat hepatocytes. Biochim Biophys Acta. 1991 Sep 11;1085(2):167–177. doi: 10.1016/0005-2760(91)90091-u. [DOI] [PubMed] [Google Scholar]
  44. Tomoda H., Igarashi K., Omura S. Inhibition of acyl-CoA synthetase by triacsins. Biochim Biophys Acta. 1987 Oct 17;921(3):595–598. [PubMed] [Google Scholar]
  45. Tugwood J. D., Issemann I., Anderson R. G., Bundell K. R., McPheat W. L., Green S. The mouse peroxisome proliferator activated receptor recognizes a response element in the 5' flanking sequence of the rat acyl CoA oxidase gene. EMBO J. 1992 Feb;11(2):433–439. doi: 10.1002/j.1460-2075.1992.tb05072.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Vamecq J., de Hoffmann E., Van Hoof F. The microsomal dicarboxylyl-CoA synthetase. Biochem J. 1985 Sep 15;230(3):683–693. doi: 10.1042/bj2300683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Waku K. Origins and fates of fatty acyl-CoA esters. Biochim Biophys Acta. 1992 Mar 4;1124(2):101–111. doi: 10.1016/0005-2760(92)90085-a. [DOI] [PubMed] [Google Scholar]
  48. Zhang B., Marcus S. L., Sajjadi F. G., Alvares K., Reddy J. K., Subramani S., Rachubinski R. A., Capone J. P. Identification of a peroxisome proliferator-responsive element upstream of the gene encoding rat peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7541–7545. doi: 10.1073/pnas.89.16.7541. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES