Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Dec 15;296(Pt 3):595–600. doi: 10.1042/bj2960595

Production of rat soluble and membrane-bound catechol O-methyltransferase forms from bifunctional mRNAs.

J Tenhunen 1, I Ulmanen 1
PMCID: PMC1137739  PMID: 8280056

Abstract

In the rat, the catechol O-methyltransferase (COMT) gene has been found to contain two promoters, P1 and P2. This organization enables the gene to produce a soluble (S-COMT) and a membrane-associated (MB-COMT) protein by using two in-frame ATG initiation codons (S- and MB-ATG). The P1 promoter expresses a 1.6 kb transcript (S-mRNA) which codes for the S-COMT polypeptide only. Here we demonstrate that the P2 promoter controls the expression of alternatively spliced 1.9 kb transcripts (MB-mRNA) which differ by a 27-nucleotide region immediately upstream of the MB-AUG codon. The presence of the 27-base sequence alters the nucleotide at position -3 from G to C, thereby changing the translation initiation context of the MB-AUG codon. Expression experiments in COS-7 cells using full-length COMT cDNAs showed that this alteration affected the initiation of the translation of the MB-AUG and consequently changed the relative amounts of MB- and S-COMT polypeptides produced. No proteolytic cleavage of the MB-COMT form to S-COMT was detected in in vitro or in vivo pulse-chase experiments. We conclude that the bifunctional 1.9 kb mRNAs are able to produce both S-COMT and MB-COMT polypeptide by the leaky scanning mechanism of translation initiation.

Full text

PDF
595

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AXELROD J., TOMCHICK R. Enzymatic O-methylation of epinephrine and other catechols. J Biol Chem. 1958 Sep;233(3):702–705. [PubMed] [Google Scholar]
  2. Andreadis A., Gallego M. E., Nadal-Ginard B. Generation of protein isoform diversity by alternative splicing: mechanistic and biological implications. Annu Rev Cell Biol. 1987;3:207–242. doi: 10.1146/annurev.cb.03.110187.001231. [DOI] [PubMed] [Google Scholar]
  3. Bertocci B., Miggiano V., Da Prada M., Dembic Z., Lahm H. W., Malherbe P. Human catechol-O-methyltransferase: cloning and expression of the membrane-associated form. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1416–1420. doi: 10.1073/pnas.88.4.1416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Felgner P. L., Gadek T. R., Holm M., Roman R., Chan H. W., Wenz M., Northrop J. P., Ringold G. M., Danielsen M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7413–7417. doi: 10.1073/pnas.84.21.7413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grossman M. H., Creveling C. R., Rybczynski R., Braverman M., Isersky C., Breakefield X. O. Soluble and particulate forms of rat catechol-O-methyltransferase distinguished by gel electrophoresis and immune fixation. J Neurochem. 1985 Feb;44(2):421–432. doi: 10.1111/j.1471-4159.1985.tb05432.x. [DOI] [PubMed] [Google Scholar]
  6. Guldberg H. C., Marsden C. A. Catechol-O-methyl transferase: pharmacological aspects and physiological role. Pharmacol Rev. 1975 Jun;27(2):135–206. [PubMed] [Google Scholar]
  7. Ikonen E., Manninen T., Peltonen L., Syvänen A. C. Quantitative determination of rare mRNA species by PCR and solid-phase minisequencing. PCR Methods Appl. 1992 May;1(4):234–240. doi: 10.1101/gr.1.4.234. [DOI] [PubMed] [Google Scholar]
  8. Jalanko A., Kallio A., Salminen M., Ulmanen I. Efficient synthesis of influenza virus hemagglutinin in mammalian cells with an extrachromosomal Epstein-Barr virus vector. Gene. 1989 May 30;78(2):287–296. doi: 10.1016/0378-1119(89)90231-x. [DOI] [PubMed] [Google Scholar]
  9. Jeffery D. R., Roth J. A. Characterization of membrane-bound and soluble catechol-O-methyltransferase from human frontal cortex. J Neurochem. 1984 Mar;42(3):826–832. doi: 10.1111/j.1471-4159.1984.tb02755.x. [DOI] [PubMed] [Google Scholar]
  10. Kozak M. An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol. 1991 Nov;115(4):887–903. doi: 10.1083/jcb.115.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kozak M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem. 1991 Oct 25;266(30):19867–19870. [PubMed] [Google Scholar]
  12. Kozak M. The scanning model for translation: an update. J Cell Biol. 1989 Feb;108(2):229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lundström K., Salminen M., Jalanko A., Savolainen R., Ulmanen I. Cloning and characterization of human placental catechol-O-methyltransferase cDNA. DNA Cell Biol. 1991 Apr;10(3):181–189. doi: 10.1089/dna.1991.10.181. [DOI] [PubMed] [Google Scholar]
  14. Malherbe P., Bertocci B., Caspers P., Zürcher G., Da Prada M. Expression of functional membrane-bound and soluble catechol-O-methyltransferase in Escherichia coli and a mammalian cell line. J Neurochem. 1992 May;58(5):1782–1789. doi: 10.1111/j.1471-4159.1992.tb10054.x. [DOI] [PubMed] [Google Scholar]
  15. Rivett A. J., Eddy B. J., Roth J. A. Contribution of sulfate conjugation, deamination, and O-methylation to metabolism of dopamine and norepinephrine in human brain. J Neurochem. 1982 Oct;39(4):1009–1016. doi: 10.1111/j.1471-4159.1982.tb11490.x. [DOI] [PubMed] [Google Scholar]
  16. Rivett A. J., Francis A., Roth J. A. Distinct cellular localization of membrane-bound and soluble forms of catechol-O-methyltransferase in brain. J Neurochem. 1983 Jan;40(1):215–219. doi: 10.1111/j.1471-4159.1983.tb12673.x. [DOI] [PubMed] [Google Scholar]
  17. Roth J. A. Membrane-bound catechol-O-methyltransferase: a reevaluation of its role in the O-methylation of the catecholamine neurotransmitters. Rev Physiol Biochem Pharmacol. 1992;120:1–29. doi: 10.1007/BFb0036121. [DOI] [PubMed] [Google Scholar]
  18. Salminen M., Lundström K., Tilgmann C., Savolainen R., Kalkkinen N., Ulmanen I. Molecular cloning and characterization of rat liver catechol-O-methyltransferase. Gene. 1990 Sep 14;93(2):241–247. doi: 10.1016/0378-1119(90)90231-f. [DOI] [PubMed] [Google Scholar]
  19. Sarkar G., Sommer S. S. The "megaprimer" method of site-directed mutagenesis. Biotechniques. 1990 Apr;8(4):404–407. [PubMed] [Google Scholar]
  20. Smith C. W., Patton J. G., Nadal-Ginard B. Alternative splicing in the control of gene expression. Annu Rev Genet. 1989;23:527–577. doi: 10.1146/annurev.ge.23.120189.002523. [DOI] [PubMed] [Google Scholar]
  21. Tenhunen J., Salminen M., Jalanko A., Ukkonen S., Ulmanen I. Structure of the rat catechol-O-methyltransferase gene: separate promoters are used to produce mRNAs for soluble and membrane-bound forms of the enzyme. DNA Cell Biol. 1993 Apr;12(3):253–263. doi: 10.1089/dna.1993.12.253. [DOI] [PubMed] [Google Scholar]
  22. Tilgmann C., Kalkkinen N. Purification and partial characterization of rat liver soluble catechol-O-methyltransferase. FEBS Lett. 1990 May 7;264(1):95–99. doi: 10.1016/0014-5793(90)80774-d. [DOI] [PubMed] [Google Scholar]
  23. Tilgmann C., Kalkkinen N. Purification and partial sequence analysis of the soluble catechol-O-methyltransferase from human placenta: comparison to the rat liver enzyme. Biochem Biophys Res Commun. 1991 Jan 31;174(2):995–1002. doi: 10.1016/0006-291x(91)91517-g. [DOI] [PubMed] [Google Scholar]
  24. Tilgmann C., Melen K., Lundström K., Jalanko A., Julkunen I., Kalkkinen N., Ulmanen I. Expression of recombinant soluble and membrane-bound catechol O-methyltransferase in eukaryotic cells and identification of the respective enzymes in rat brain. Eur J Biochem. 1992 Jul 15;207(2):813–821. doi: 10.1111/j.1432-1033.1992.tb17112.x. [DOI] [PubMed] [Google Scholar]
  25. Ulmanen I., Lundström K. Cell-free synthesis of rat and human catechol O-methyltransferase. Insertion of the membrane-bound form into microsomal membranes in vitro. Eur J Biochem. 1991 Dec 18;202(3):1013–1020. doi: 10.1111/j.1432-1033.1991.tb16464.x. [DOI] [PubMed] [Google Scholar]
  26. White H. L., Wu J. C. Properties of catechol O-methyltransferases from brain and liver of rat and human. Biochem J. 1975 Feb;145(2):135–143. doi: 10.1042/bj1450135. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES