Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Dec 15;296(Pt 3):657–661. doi: 10.1042/bj2960657

Analysis, by electrospray ionization mass spectrometry, of several forms of Clostridium pasteurianum rubredoxin.

Y Petillot 1, E Forest 1, I Mathieu 1, J Meyer 1, J M Moulis 1
PMCID: PMC1137747  PMID: 8280064

Abstract

Clostridium pasteurianum rubredoxin and its recombinant counterpart purified from Escherichia coli have been analysed by electrospray ionization m.s. (e.s.i.m.s.). Whereas the N-terminal methionine of the native protein is formylated, the recombinant one has a free N-terminal methionine. E. coli cells also produce a colourless protein from the cloned gene. This protein is absent from C. pasteurianum and was shown to be zinc-substituted rubredoxin. The molecular forms of rubredoxin detected by e.s.i.m.s. depended on the experimental conditions used. Significant conversion into apo-rubredoxin occurred when the proteins were ionized at acidic pH and detected in the positive-ion mode. This conversion was quantitative in the case of Zn-rubredoxin. In contrast, when the proteins were analysed at neutral pH in the negative-ion mode, only the holoproteins, i.e. the species initially present in the solutions, were detected in the spectra. The e.s.i.m.s. experimental conditions set up here may prove useful for the analysis of other acidic metalloproteins with weakly bound metals.

Full text

PDF
657

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. M. On the release of the formyl group from nascent protein. J Mol Biol. 1968 May 14;33(3):571–589. doi: 10.1016/0022-2836(68)90307-0. [DOI] [PubMed] [Google Scholar]
  2. Berg J. M. Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules. J Biol Chem. 1990 Apr 25;265(12):6513–6516. [PubMed] [Google Scholar]
  3. Bergman T., Jörnvall H., Holmquist B., Vallee B. L. A synthetic peptide encompassing the binding site of the second zinc atom (the 'structural' zinc) of alcohol dehydrogenase. Eur J Biochem. 1992 Apr 15;205(2):467–470. doi: 10.1111/j.1432-1033.1992.tb16802.x. [DOI] [PubMed] [Google Scholar]
  4. Chait B. T., Kent S. B. Weighing naked proteins: practical, high-accuracy mass measurement of peptides and proteins. Science. 1992 Sep 25;257(5078):1885–1894. doi: 10.1126/science.1411504. [DOI] [PubMed] [Google Scholar]
  5. Eidsness M. K., O'Dell S. E., Kurtz D. M., Jr, Robson R. L., Scott R. A. Expression of a synthetic gene coding for the amino acid sequence of Clostridium pasteurianum rubredoxin. Protein Eng. 1992 Jun;5(4):367–371. doi: 10.1093/protein/5.4.367. [DOI] [PubMed] [Google Scholar]
  6. Fenn J. B., Mann M., Meng C. K., Wong S. F., Whitehouse C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989 Oct 6;246(4926):64–71. doi: 10.1126/science.2675315. [DOI] [PubMed] [Google Scholar]
  7. Grupe H., Gottschalk G. Physiological Events in Clostridium acetobutylicum during the Shift from Acidogenesis to Solventogenesis in Continuous Culture and Presentation of a Model for Shift Induction. Appl Environ Microbiol. 1992 Dec;58(12):3896–3902. doi: 10.1128/aem.58.12.3896-3902.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hutchens T. W., Allen M. H., Li C. M., Yip T. T. Occupancy of a C2-C2 type 'zinc-finger' protein domain by copper. Direct observation by electrospray ionization mass spectrometry. FEBS Lett. 1992 Sep 7;309(2):170–174. doi: 10.1016/0014-5793(92)81088-4. [DOI] [PubMed] [Google Scholar]
  9. Karlsson B. G., Pascher T., Nordling M., Arvidsson R. H., Lundberg L. G. Expression of the blue copper protein azurin from Pseudomonas aeruginosa in Escherichia coli. FEBS Lett. 1989 Mar 27;246(1-2):211–217. doi: 10.1016/0014-5793(89)80285-6. [DOI] [PubMed] [Google Scholar]
  10. Loo J. A., Loo R. R., Udseth H. R., Edmonds C. G., Smith R. D. Solvent-induced conformational changes of polypeptides probed by electrospray-ionization mass spectrometry. Rapid Commun Mass Spectrom. 1991 Mar;5(3):101–105. doi: 10.1002/rcm.1290050303. [DOI] [PubMed] [Google Scholar]
  11. Mathieu I., Meyer J., Moulis J. M. Cloning, sequencing and expression in Escherichia coli of the rubredoxin gene from Clostridium pasteurianum. Biochem J. 1992 Jul 1;285(Pt 1):255–262. doi: 10.1042/bj2850255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Meyer J., Gagnon J., Sieker L. C., Van Dorsselaer A., Moulis J. M. Rubredoxin from Clostridium thermosaccharolyticum. Amino acid sequence, mass-spectrometric and preliminary crystallographic data. Biochem J. 1990 Nov 1;271(3):839–841. doi: 10.1042/bj2710839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Moulis J. M., Scherrer N., Gagnon J., Forest E., Petillot Y., Garcia D. Primary structure of Chromatium tepidum high-potential iron-sulfur protein in relation to thermal denaturation. Arch Biochem Biophys. 1993 Aug 15;305(1):186–192. doi: 10.1006/abbi.1993.1409. [DOI] [PubMed] [Google Scholar]
  14. Nar H., Huber R., Messerschmidt A., Filippou A. C., Barth M., Jaquinod M., van de Kamp M., Canters G. W. Characterization and crystal structure of zinc azurin, a by-product of heterologous expression in Escherichia coli of Pseudomonas aeruginosa copper azurin. Eur J Biochem. 1992 May 1;205(3):1123–1129. doi: 10.1111/j.1432-1033.1992.tb16881.x. [DOI] [PubMed] [Google Scholar]
  15. Omichinski J. G., Trainor C., Evans T., Gronenborn A. M., Clore G. M., Felsenfeld G. A small single-"finger" peptide from the erythroid transcription factor GATA-1 binds specifically to DNA as a zinc or iron complex. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1676–1680. doi: 10.1073/pnas.90.5.1676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Smith A. T., Santama N., Dacey S., Edwards M., Bray R. C., Thorneley R. N., Burke J. F. Expression of a synthetic gene for horseradish peroxidase C in Escherichia coli and folding and activation of the recombinant enzyme with Ca2+ and heme. J Biol Chem. 1990 Aug 5;265(22):13335–13343. [PubMed] [Google Scholar]
  17. Vallee B. L., Auld D. S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry. 1990 Jun 19;29(24):5647–5659. doi: 10.1021/bi00476a001. [DOI] [PubMed] [Google Scholar]
  18. Vallee B. L., Coleman J. E., Auld D. S. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):999–1003. doi: 10.1073/pnas.88.3.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Varadarajan R., Szabo A., Boxer S. G. Cloning, expression in Escherichia coli, and reconstitution of human myoglobin. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5681–5684. doi: 10.1073/pnas.82.17.5681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Watenpaugh K. D., Sieker L. C., Jensen L. H. Crystallographic refinement of rubredoxin at 1 x 2 A degrees resolution. J Mol Biol. 1980 Apr 15;138(3):615–633. doi: 10.1016/s0022-2836(80)80020-9. [DOI] [PubMed] [Google Scholar]
  21. van de Kamp M., Hali F. C., Rosato N., Agro A. F., Canters G. W. Purification and characterization of a non-reconstitutable azurin, obtained by heterologous expression of the Pseudomonas aeruginosa azu gene in Escherichia coli. Biochim Biophys Acta. 1990 Sep 19;1019(3):283–292. doi: 10.1016/0005-2728(90)90206-j. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES