Abstract
To try to lower the pH optimum, the carboxy groups of Arthrobacter D-xylose isomerase were coupled to glycinamide using a water-soluble carbodi-imide. In conditions that substituted all of the 59 carboxy groups in the denatured monomer, a maximum of 30 groups/monomer reacted in the native enzyme, whether in presence or absence of ligands, and the enzyme remained fully active and tetrameric throughout the coupling reaction. Purification by f.p.l.c. ion-exchange chromatography gave broad symmetrical peaks with increased pI, suggesting that the modified enzymes are essentially homogeneous. However, they are less stable than native enzyme in 8 M urea or on heating ('melting points' of 59 degrees versus 73 degrees C for the apoenzymes and 67 degrees versus 81.5 degrees C for the Mg(2+)-enzymes). Kinetic studies of the D-fructose isomerase activity at 30 degrees C showed that the glycinamidylated enzyme had unaltered activation constant for Mg2+, and Km was also similar to that of the native enzyme at pH 7.3, but increased rapidly at higher pH rather than remaining constant. Vmax. was constant from pH 6.2 to 8.0, suggesting a reduced pKa for His-219, which controls Vmax. in the native enzyme (normally 6.0). Three mutants were constructed by protein engineering with a view to reducing the pH optimum of enzyme activity. Two of these, Glu140-->Lys and Asp189-->Lys, could be detected in crude extracts of Escherichia coli by SDS/PAGE, but could not be purified, whereas mutant Trp136-->Glu was produced as a tetramer in amounts similar to the wild-type enzyme. However, it did not show any enzyme activity and was less stable in 0-9 M urea gradient PAGE.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Carraway K. L., Koshland D. E., Jr Reaction of tyrosine residues in proteins with carbodiimide reagents. Biochim Biophys Acta. 1968 Jun 26;160(2):272–274. doi: 10.1016/0005-2795(68)90102-5. [DOI] [PubMed] [Google Scholar]
- Collyer C. A., Henrick K., Blow D. M. Mechanism for aldose-ketose interconversion by D-xylose isomerase involving ring opening followed by a 1,2-hydride shift. J Mol Biol. 1990 Mar 5;212(1):211–235. doi: 10.1016/0022-2836(90)90316-E. [DOI] [PubMed] [Google Scholar]
- Darbre A., Islam A. Gas-liquid chromatography of trifluoroacetylated amino acid methyl esters. Biochem J. 1968 Feb;106(4):923–925. doi: 10.1042/bj1060923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fontana A., Fassina G., Vita C., Dalzoppo D., Zamai M., Zambonin M. Correlation between sites of limited proteolysis and segmental mobility in thermolysin. Biochemistry. 1986 Apr 22;25(8):1847–1851. doi: 10.1021/bi00356a001. [DOI] [PubMed] [Google Scholar]
- Hartley B. S. Strategy and tactics in protein chemistry. Biochem J. 1970 Oct;119(5):805–822. doi: 10.1042/bj1190805f. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henrick K., Collyer C. A., Blow D. M. Structures of D-xylose isomerase from Arthrobacter strain B3728 containing the inhibitors xylitol and D-sorbitol at 2.5 A and 2.3 A resolution, respectively. J Mol Biol. 1989 Jul 5;208(1):129–157. doi: 10.1016/0022-2836(89)90092-2. [DOI] [PubMed] [Google Scholar]
- Hoare D. G., Koshland D. E., Jr A method for the quantitative modification and estimation of carboxylic acid groups in proteins. J Biol Chem. 1967 May 25;242(10):2447–2453. [PubMed] [Google Scholar]
- Jenkins J., Janin J., Rey F., Chiadmi M., van Tilbeurgh H., Lasters I., De Maeyer M., Van Belle D., Wodak S. J., Lauwereys M. Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 1. Crystallography and site-directed mutagenesis of metal binding sites. Biochemistry. 1992 Jun 23;31(24):5449–5458. doi: 10.1021/bi00139a005. [DOI] [PubMed] [Google Scholar]
- Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lambeir A. M., Lauwereys M., Stanssens P., Mrabet N. T., Snauwaert J., van Tilbeurgh H., Matthyssens G., Lasters I., De Maeyer M., Wodak S. J. Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 2. Site-directed mutagenesis of the xylose binding site. Biochemistry. 1992 Jun 23;31(24):5459–5466. doi: 10.1021/bi00139a006. [DOI] [PubMed] [Google Scholar]
- Loviny-Anderton T., Shaw P. C., Shin M. K., Hartley B. S. D-Xylose (D-glucose) isomerase from Arthrobacter strain N.R.R.L. B3728. Gene cloning, sequence and expression. Biochem J. 1991 Jul 1;277(Pt 1):263–271. doi: 10.1042/bj2770263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mead D. A., Szczesna-Skorupa E., Kemper B. Single-stranded DNA 'blue' T7 promoter plasmids: a versatile tandem promoter system for cloning and protein engineering. Protein Eng. 1986 Oct-Nov;1(1):67–74. doi: 10.1093/protein/1.1.67. [DOI] [PubMed] [Google Scholar]
- Rangarajan M., Asboth B., Hartley B. S. Stability of Arthrobacter D-xylose isomerase to denaturants and heat. Biochem J. 1992 Aug 1;285(Pt 3):889–898. doi: 10.1042/bj2850889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rangarajan M., Hartley B. S. Mechanism of D-fructose isomerization by Arthrobacter D-xylose isomerase. Biochem J. 1992 Apr 1;283(Pt 1):223–233. doi: 10.1042/bj2830223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russell A. J., Fersht A. R. Rational modification of enzyme catalysis by engineering surface charge. Nature. 1987 Aug 6;328(6130):496–500. doi: 10.1038/328496a0. [DOI] [PubMed] [Google Scholar]
- Schmidt-Ullrich R., Thompson W. S., Wallach D. F. Antigenic distinctions of glycoproteins in plasma and mitochondrial membranes of lymphoid cells neoplastically transformed by simian virus 40. Proc Natl Acad Sci U S A. 1977 Feb;74(2):643–647. doi: 10.1073/pnas.74.2.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siddiqui K. S., Rangarajan M., Hartley B. S., Kitmitto A., Panico M., Blench I. P., Morris H. R. Arthrobacter D-xylose isomerase: partial proteolysis with thermolysin. Biochem J. 1993 Jan 1;289(Pt 1):201–208. doi: 10.1042/bj2890201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smart O. S., Akins J., Blow D. M. Molecular mechanics simulations of a conformational rearrangement of D-xylose in the active site of D-xylose isomerase. Proteins. 1992 Apr;13(2):100–111. doi: 10.1002/prot.340130203. [DOI] [PubMed] [Google Scholar]
- Smith C. A., Rangarajan M., Hartley B. S. D-Xylose (D-glucose) isomerase from Arthrobacter strain N.R.R.L. B3728. Purification and properties. Biochem J. 1991 Jul 1;277(Pt 1):255–261. doi: 10.1042/bj2770255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spomer W. E., Wootton J. F. The hydrolysis of alpha-N-benzoyl-L-argininamide catalyzed by trypsin and acetyltrypsin. Dependence on pH. Biochim Biophys Acta. 1971 Apr 14;235(1):164–171. doi: 10.1016/0005-2744(71)90044-1. [DOI] [PubMed] [Google Scholar]
- Valenzuela P., Bender M. L. Kinetic properties of succinylated and ethylenediamine-amidated -chymotrypsins. Biochim Biophys Acta. 1971 Dec 15;250(3):538–548. doi: 10.1016/0005-2744(71)90254-3. [DOI] [PubMed] [Google Scholar]
- Varsani L., Cui T., Rangarajan M., Hartley B. S., Goldberg J., Collyer C., Blow D. M. Arthrobacter D-xylose isomerase: protein-engineered subunit interfaces. Biochem J. 1993 Apr 15;291(Pt 2):575–583. doi: 10.1042/bj2910575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zoller M. J., Smith M. Oligonucleotide-directed mutagenesis using M13-derived vectors: an efficient and general procedure for the production of point mutations in any fragment of DNA. Nucleic Acids Res. 1982 Oct 25;10(20):6487–6500. doi: 10.1093/nar/10.20.6487. [DOI] [PMC free article] [PubMed] [Google Scholar]


