Abstract
Microinjection of mRNA isolated from rat kidney cortex into Xenopus laevis oocytes resulted in the expression of a Na(+)-dependent dicarboxylate transporter, as detected by uptake measurements with [14C]succinate as substrate. The expressed transporter showed an S-shaped Na(+)-dependence with half-maximal activation at 19-21 mM Na+ and a Hill coefficient between 2 and 3. Endogenous succinate uptake was not Na(+)-dependent. Na(+)-stimulated succinate uptake in mRNA-injected oocytes exhibited a maximum at pH 7.5, whereas endogenous Na(+)-independent transporter was fastest at pH 8.5. The expressed dicarboxylate transporter also differed from the endogenous transporter in its sensitivity to citrate as well as dicarboxylates in trans and cis configurations. The expressed transporter resembled the renal basolateral transporter, especially with respect to affinity for succinate (Km 28 microM), activation by Na+, pH-dependence and substrate specificity. After injection of size-fractionated mRNA, succinate uptake was expressed by mRNA of 2-3 kb. Our results suggest expression of the basolateral Na(+)-dependent dicarboxylate transporter after injection of mRNA from rat kidney into Xenopus oocytes.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burckhardt B. C., Kroll B., Frömter E. Proton transport mechanism in the cell membrane of Xenopus laevis oocytes. Pflugers Arch. 1992 Jan;420(1):78–82. doi: 10.1007/BF00378644. [DOI] [PubMed] [Google Scholar]
- Burckhardt G. Sodium-dependent dicarboxylate transport in rat renal basolateral membrane vesicles. Pflugers Arch. 1984 Jul;401(3):254–261. doi: 10.1007/BF00582592. [DOI] [PubMed] [Google Scholar]
- Burckhardt G., Ullrich K. J. Organic anion transport across the contraluminal membrane--dependence on sodium. Kidney Int. 1989 Sep;36(3):370–377. doi: 10.1038/ki.1989.205. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Coady M. J., Pajor A. M., Toloza E. M., Wright E. M. Expression of mammalian renal transporters in Xenopus laevis oocytes. Arch Biochem Biophys. 1990 Nov 15;283(1):130–134. doi: 10.1016/0003-9861(90)90622-6. [DOI] [PubMed] [Google Scholar]
- Dumont J. N. Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J Morphol. 1972 Feb;136(2):153–179. doi: 10.1002/jmor.1051360203. [DOI] [PubMed] [Google Scholar]
- Eckard P., Passow H. Sodium-dependent and sodium-independent phosphate uptake by full-grown, prophase-arrested oocytes of Xenopus laevis before and after progesterone-induced maturation. Cell Biol Int Rep. 1987 May;11(5):349–358. doi: 10.1016/0309-1651(87)90001-4. [DOI] [PubMed] [Google Scholar]
- Fukuhara Y., Turner R. J. Sodium-dependent succinate transport in renal outer cortical brush border membrane vesicles. Am J Physiol. 1983 Sep;245(3):F374–F381. doi: 10.1152/ajprenal.1983.245.3.F374. [DOI] [PubMed] [Google Scholar]
- Hediger M. A., Coady M. J., Ikeda T. S., Wright E. M. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. 1987 Nov 26-Dec 2Nature. 330(6146):379–381. doi: 10.1038/330379a0. [DOI] [PubMed] [Google Scholar]
- Heikkila J. J. Use of Xenopus oocytes to study the expression of cloned genes and translation of mRNA. Biotechnol Adv. 1989;7(1):47–59. doi: 10.1016/0734-9750(89)90903-8. [DOI] [PubMed] [Google Scholar]
- Jung D., Schwarz W., Passow H. Sodium-alanine cotransport in oocytes of Xenopus laevis: correlation of alanine and sodium fluxes with potential and current changes. J Membr Biol. 1984;78(1):29–34. doi: 10.1007/BF01872529. [DOI] [PubMed] [Google Scholar]
- Jørgensen K. E., Kragh-Hansen U., Røigaard-Petersen H., Sheikh M. I. Citrate uptake by basolateral and luminal membrane vesicles from rabbit kidney cortex. Am J Physiol. 1983 Jun;244(6):F686–F695. doi: 10.1152/ajprenal.1983.244.6.F686. [DOI] [PubMed] [Google Scholar]
- Said H. M., Polenzani L., Khorchid S., Hollander D., Miledi R. Uptake of biotin by native Xenopus laevis oocytes. Am J Physiol. 1990 Sep;259(3 Pt 1):C397–C401. doi: 10.1152/ajpcell.1990.259.3.C397. [DOI] [PubMed] [Google Scholar]
- Sheridan E., Rumrich G., Ullrich K. J. Reabsorption of dicarboxylic acids from the proximal convolution of rat kidney. Pflugers Arch. 1983 Sep;399(1):18–28. doi: 10.1007/BF00652517. [DOI] [PubMed] [Google Scholar]
- Simpson D. P. Citrate excretion: a window on renal metabolism. Am J Physiol. 1983 Mar;244(3):F223–F234. doi: 10.1152/ajprenal.1983.244.3.F223. [DOI] [PubMed] [Google Scholar]
- Steffgen J., Koepsell H., Schwarz W. Endogenous L-glutamate transport in oocytes of Xenopus laevis. Biochim Biophys Acta. 1991 Jul 1;1066(1):14–20. doi: 10.1016/0005-2736(91)90244-3. [DOI] [PubMed] [Google Scholar]
- Ullrich K. J., Fasold H., Rumrich G., Klöss S. Secretion and contraluminal uptake of dicarboxylic acids in the proximal convolution of rat kidney. Pflugers Arch. 1984 Mar;400(3):241–249. doi: 10.1007/BF00581554. [DOI] [PubMed] [Google Scholar]
- Ullrich K. J., Rumrich G., Klöss S. Contraluminal organic anion and cation transport in the proximal renal tubule: V. Interaction with sulfamoyl- and phenoxy diuretics, and with beta-lactam antibiotics. Kidney Int. 1989 Jul;36(1):78–88. doi: 10.1038/ki.1989.164. [DOI] [PubMed] [Google Scholar]
- Weber W. M., Püschel B., Steffgen J., Koepsell H., Schwarz W. Comparison of a Na+/D-glucose cotransporter from rat intestine expressed in oocytes of Xenopus laevis with the endogenous cotransporter. Biochim Biophys Acta. 1991 Mar 18;1063(1):73–80. doi: 10.1016/0005-2736(91)90355-c. [DOI] [PubMed] [Google Scholar]
- Werner A., Biber J., Forgo J., Palacin M., Murer H. Expression of renal transport systems for inorganic phosphate and sulfate in Xenopus laevis oocytes. J Biol Chem. 1990 Jul 25;265(21):12331–12336. [PubMed] [Google Scholar]
- Wright E. M. Transport of carboxylic acids by renal membrane vesicles. Annu Rev Physiol. 1985;47:127–141. doi: 10.1146/annurev.ph.47.030185.001015. [DOI] [PubMed] [Google Scholar]
- Wright S. H., Kippen I., Wright E. M. Effect of pH on the transport of Krebs cycle intermediates in renal brush border membranes. Biochim Biophys Acta. 1982 Jan 22;684(2):287–290. doi: 10.1016/0005-2736(82)90019-0. [DOI] [PubMed] [Google Scholar]
- Wright S. H., Wunz T. M. Succinate and citrate transport in renal basolateral and brush-border membranes. Am J Physiol. 1987 Sep;253(3 Pt 2):F432–F439. doi: 10.1152/ajprenal.1987.253.3.F432. [DOI] [PubMed] [Google Scholar]
