Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Jan 1;297(Pt 1):115–122. doi: 10.1042/bj2970115

Control analysis applied to the whole body: control by body organs over plasma concentrations and organ fluxes of substances in the blood.

G C Brown 1
PMCID: PMC1137799  PMID: 8280089

Abstract

Metabolic control analysis is adapted as a method for describing and analysing the control by organs in the body over the fluxes and concentrations of substances carried in the blood. This physiological control analysis can most usefully be applied to substances with fluxes into and out of organs that are uniquely dependent only on their plasma concentrations. The organ flux of a substance is defined as the steady-state net flux of a substance into a particular organ. The organ flux control coefficients quantify the extent to which a particular organ controls the flux of a substance into the same or another particular organ. Organ concentration control coefficients quantify the extent to which an organ controls the steady-state concentration of a substance in the blood. The control coefficients are additive and obey summation, connectivity and branching theorems. Thus the control coefficients can be determined experimentally by measuring the sensitivities (elasticities) of organ fluxes to the plasma concentration of the substance. As an example of the application of these concepts, the control of ketone-body metabolism in vivo is analysed using data from the literature.

Full text

PDF
115

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balasse E. O., Neef M. A. Inhibition of ketogenesis by ketone bodies in fasting humans. Metabolism. 1975 Sep;24(9):999–1007. doi: 10.1016/0026-0495(75)90092-x. [DOI] [PubMed] [Google Scholar]
  2. Best J. D., Taborsky G. J., Jr, Halter J. B., Porte D., Jr Glucose disposal is not proportional to plasma glucose level in man. Diabetes. 1981 Oct;30(10):847–850. doi: 10.2337/diab.30.10.847. [DOI] [PubMed] [Google Scholar]
  3. Brown G. C., Cooper C. E. Control analysis applied to single enzymes: can an isolated enzyme have a unique rate-limiting step? Biochem J. 1993 Aug 15;294(Pt 1):87–94. doi: 10.1042/bj2940087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown G. C., Hafner R. P., Brand M. D. A 'top-down' approach to the determination of control coefficients in metabolic control theory. Eur J Biochem. 1990 Mar 10;188(2):321–325. doi: 10.1111/j.1432-1033.1990.tb15406.x. [DOI] [PubMed] [Google Scholar]
  5. Crabtree B., Newsholme E. A. A quantitative approach to metabolic control. Curr Top Cell Regul. 1985;25:21–76. doi: 10.1016/b978-0-12-152825-6.50006-0. [DOI] [PubMed] [Google Scholar]
  6. Fell D. A. Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J. 1992 Sep 1;286(Pt 2):313–330. doi: 10.1042/bj2860313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fell D. A., Sauro H. M. Metabolic control and its analysis. Additional relationships between elasticities and control coefficients. Eur J Biochem. 1985 May 2;148(3):555–561. doi: 10.1111/j.1432-1033.1985.tb08876.x. [DOI] [PubMed] [Google Scholar]
  8. Foster D. W. Banting lecture 1984. From glycogen to ketones--and back. Diabetes. 1984 Dec;33(12):1188–1199. doi: 10.2337/diab.33.12.1188. [DOI] [PubMed] [Google Scholar]
  9. Giersch C. Control analysis of metabolic networks. 1. Homogeneous functions and the summation theorems for control coefficients. Eur J Biochem. 1988 Jun 15;174(3):509–513. doi: 10.1111/j.1432-1033.1988.tb14128.x. [DOI] [PubMed] [Google Scholar]
  10. Giersch C. Control analysis of metabolic networks. 2. Total differentials and general formulation of the connectivity relations. Eur J Biochem. 1988 Jun 15;174(3):515–519. doi: 10.1111/j.1432-1033.1988.tb14129.x. [DOI] [PubMed] [Google Scholar]
  11. Girard J., Ferré P., Pégorier J. P., Duée P. H. Adaptations of glucose and fatty acid metabolism during perinatal period and suckling-weaning transition. Physiol Rev. 1992 Apr;72(2):507–562. doi: 10.1152/physrev.1992.72.2.507. [DOI] [PubMed] [Google Scholar]
  12. Heinrich R., Rapoport S. M., Rapoport T. A. Metabolic regulation and mathematical models. Prog Biophys Mol Biol. 1977;32(1):1–82. [PubMed] [Google Scholar]
  13. Heinrich R., Rapoport T. A. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem. 1974 Feb 15;42(1):89–95. doi: 10.1111/j.1432-1033.1974.tb03318.x. [DOI] [PubMed] [Google Scholar]
  14. Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
  15. Kahn D., Westerhoff H. V. Control theory of regulatory cascades. J Theor Biol. 1991 Nov 21;153(2):255–285. doi: 10.1016/s0022-5193(05)80426-6. [DOI] [PubMed] [Google Scholar]
  16. Keller U., Lustenberger M., Stauffacher W. Effect of insulin on ketone body clearance studied by a ketone body "clamp" technique in normal man. Diabetologia. 1988 Jan;31(1):24–29. doi: 10.1007/BF00279128. [DOI] [PubMed] [Google Scholar]
  17. Pye S., Watarai T., Davies G., Radziuk J. Comparison of the continuously calculated fractional splanchnic extraction of insulin with its fractional disappearance using a new double-tracer technique. Metabolism. 1993 Feb;42(2):145–153. doi: 10.1016/0026-0495(93)90028-m. [DOI] [PubMed] [Google Scholar]
  18. Quant P. A. Experimental application of top-down control analysis to metabolic systems. Trends Biochem Sci. 1993 Jan;18(1):26–30. doi: 10.1016/0968-0004(93)90084-z. [DOI] [PubMed] [Google Scholar]
  19. Radziuk J., Lickley H. L. The metabolic clearance of glucose: measurement and meaning. Diabetologia. 1985 Jun;28(6):315–322. doi: 10.1007/BF00283136. [DOI] [PubMed] [Google Scholar]
  20. Robinson A. M., Williamson D. H. Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol Rev. 1980 Jan;60(1):143–187. doi: 10.1152/physrev.1980.60.1.143. [DOI] [PubMed] [Google Scholar]
  21. Saccà L., Toffolo G., Cobelli C. V-A and A-V modes in whole body and regional kinetics: domain of validity from a physiological model. Am J Physiol. 1992 Oct;263(4 Pt 1):E597–E606. doi: 10.1152/ajpendo.1992.263.4.E597. [DOI] [PubMed] [Google Scholar]
  22. Sauro H. M., Small J. R., Fell D. A. Metabolic control and its analysis. Extensions to the theory and matrix method. Eur J Biochem. 1987 May 15;165(1):215–221. doi: 10.1111/j.1432-1033.1987.tb11214.x. [DOI] [PubMed] [Google Scholar]
  23. Schuster S., Heinrich R. The definitions of metabolic control analysis revisited. Biosystems. 1992;27(1):1–15. doi: 10.1016/0303-2647(92)90042-w. [DOI] [PubMed] [Google Scholar]
  24. Taylor C. R. Structural and functional limits to oxidative metabolism: insights from scaling. Annu Rev Physiol. 1987;49:135–146. doi: 10.1146/annurev.ph.49.030187.001031. [DOI] [PubMed] [Google Scholar]
  25. Weibel E. R. Scaling of structural and functional variables in the respiratory system. Annu Rev Physiol. 1987;49:147–159. doi: 10.1146/annurev.ph.49.030187.001051. [DOI] [PubMed] [Google Scholar]
  26. Westerhoff H. V., Chen Y. D. How do enzyme activities control metabolite concentrations? An additional theorem in the theory of metabolic control. Eur J Biochem. 1984 Jul 16;142(2):425–430. doi: 10.1111/j.1432-1033.1984.tb08304.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES