Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2024 Aug 20;44(8):1545–1552. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2024.08.13

Swertiamarin通过抑制肠上皮细胞细胞凋亡改善TNBS诱导的实验性结肠炎

Swertiamarin ameliorates 2,4,6-trinitrobenzenesulfonic acid-induced colitis in mice by inhibiting intestinal epithelial cell apoptosis

LIU Shuo 1,2, LI Jing 2,3, WU Xingwang 4,
Editor: 经 媛
PMCID: PMC11378047  PMID: 39276050

Abstract

目的

本研究旨在探讨Swertiamarin(STM)通过拮抗肠上皮细胞凋亡改善CD样结肠炎的作用和机制。

方法

体外建立TNF-α刺激的Caco-2细胞凋亡模型,分为3组:对照组(Con)、TNF-α刺激组(TNF-α)和STM干预组(STM),通过Tunel染色、免疫印迹、免疫荧光和上皮电阻检测等方法,评估STM对细胞凋亡和屏障功能的影响。体内建立TNBS诱导的CD样结肠炎小鼠模型,分为3组:WT、TNBS和STM组,利用小鼠体质量变化、疾病活动指数评分、炎症评分和黏膜组织中炎症因子含量分析STM对结肠炎的作用;通过通透性、细菌移位率和紧密连接蛋白表达与定位观察STM对肠屏障功能的影响;使用Tunel染色和免疫印迹检测凋亡相关蛋白水平评估STM对上皮细胞凋亡的作用。体内外研究验证PI3K/AKT通路在STM抗肠上皮细胞凋亡中的调控作用。

结果

体外研究中TUNEL染色结果显示,STM显著得减少TUNEL着色的Caco-2细胞的比例(P<0.05);免疫印迹数据显示,STM组中cleavedcaspase3和Bax的表达低于TNF-α 组(P<0.05),而Bcl2的水平则增高(P<0.05);肠屏障完整性和功能检测显示,STM恢复了TEER值(P<0.05)、促进了紧密连接蛋白(ZO1和claudin 1)的定位正常化和表达水平的上调(P<0.05),以及抑制了促炎因子(IL-6和CCL3)的表达(P<0.05)。体内研究显示STM能缓解结肠炎和肠屏障功能障碍,具体表现为体重下降、疾病活动指数(DAI)评分、炎症评分和促炎因子(IL-6和CCL3)释放以及肠屏障通透性、结肠TEER、细菌移位和紧密连接蛋白(ZO1和Claudin-1)定位与表达均得到了改善(P<0.05)。机制上,STM在体和体外均抑制了p-PI3K和p-AKT的表达(P<0.05),且PI3K/AKT 通路的激活剂(740YP)阻遏了STM抗TNF-α诱导的Caco-2凋亡作用(P<0.05)。

结论

STM至少部分是通过抑制PI3K/AKT通路的激活,拮抗肠上皮细胞细胞的凋亡,进而改善肠屏障功能障碍和实验性结肠炎。

Keywords: 克罗恩病, 肠屏障, 肠上皮细胞凋亡, Swertiamarin, PI3K/AKT通路


克罗恩病(CD)是一种损害整个胃肠道的慢性、复发性炎症性肠病,在全球的发病率呈逐渐上升趋势1。CD的发病机制尚不明确,可能的发病原因包括遗传易感、共生菌群紊乱、免疫耐受缺失和环境因素等2。其中,肠屏障功能障碍是CD的基本病理特征之一,也是慢性复发性肠道炎症的重要维持因素3。因此,围绕肠屏障领域的探索有望为CD病理生理机制的揭示和临床诊疗革新提供线索。人体具有完善的自稳调节机制以维系肠屏障的结构完整和功能稳定,而肠上皮细胞在其中扮演重要角色4。肠上皮细胞自稳调控途径包括:肠上皮细胞更新维持平衡和适度凋亡、细胞间紧密连接蛋白(TJ)损伤的及时修复等5。IBD衍生的肠道类器官保留了患者消化道的病理性特征,且对TNF-α的敏感性较非IBD受试者显著地增加67,以及CD患者肠上皮细胞存在过度凋亡的现象[14, 15。由其推测,降低肠上皮细胞过度凋亡可能会保护肠屏障途径改善CD样肠道炎症6-9。因此,抑制肠上皮细胞的凋亡可有效保护肠屏障功能,进而发挥拮抗CD样肠炎的作用。目前,CD仍以药物治疗为主,但是临床上使用的药物具有不同程度的副作用和耐受性,而天然植物单体在实验动物中表现出较少的毒副作用,并且没有产生抗性1011。獐牙菜苦苷(STM)是从龙胆科植物斜茎獐牙菜中分离而得的一种环烯醚萜类化合物。多项研究表明,STM具有改善CCl4和氧化应激诱导的大鼠肝细胞凋亡,以及抑制炎症因子诱导的成纤维细胞样滑膜细胞(FLS)的凋亡1213。而STM在CD中调控作用和分子机制尚未报道,在本研究中,我们发现建立了TNF-α诱导的肠上皮细胞模型与TNBS诱导小鼠结肠炎模型,分析STM对肠上皮细胞凋亡、促炎因子释放、肠屏障功能和肠炎的作用及可能的分子机制。

1. 材料和方法

1.1. 细胞培养与干预

Caco-2细胞购自国家生物医学实验细胞资源库,培养于20%胎牛血清的MEM培养基(Thermo Fisher Scientific)中。细胞干预包括两个部分:第一部分是探索STM调控肠上皮细胞凋亡作用,分为对照组(Con)、TNF-α刺激组(TNF-α)和STM干预组(STM),其中TNF-α组的细胞经TNF-α重组蛋白(20 ng/mL)孵育24 h14,STM组的细胞先经50 μmol/L的STM预孵育30 min,再经20 ng/mL的TNF-α重组蛋白孵育24 h。第二部分是验证PI3K/AKT通路参与STM抗上皮细胞凋亡的分子机制,分为STM干预组(STM)和PI3K/AKT通路激活剂处理组(740Y-P),740Y-P细胞先经50 μmol/L的STM和30 μg/mL的740Y-P预孵育30 min15,再经20 ng/mL的TNF-α重组蛋白孵育24 h。

1.2. 动物模型建立和干预

将Wild type(WT)小鼠(C57BL/6,30只,购买于江苏省集萃药康公司)随机分成3组:WT、TNBS和STM组,每组10只。TNBS组小鼠结肠炎模型建立如下16:禁食24 h和麻醉后,小鼠经灌肠100 μL含有2.5%的2,4,6-Trinitrobenzenesulfonic acid(TNBS)和50%乙醇混合溶液。STM组小鼠经TNBS建模后,每日灌胃给予200 μL的STM(100 mg/kg)干预,WT组和TNBS组小鼠每日灌胃给予200 μL的STM稀释缓冲液。正常饲养7 d后处死小鼠,取检结肠、血清、肠系膜淋巴结、脾和肝脏等组织,用于后续检测。本研究通过蚌埠医科大学第一附属医院动物伦理委员会审查(伦动科批字[2023]第427号)。

1.3. 通透性检测

禁食4 h后,小鼠经灌胃给予400 mg/kg的4000 D FITC-dextran(FD4),4 h后摘取小鼠眼球,收集血清,用多功能酶标仪检测FD4的荧光强度。

1.4. qRT-PCR

通过Trizol法提取新鲜的肠黏膜组织和Caco-2细胞中RNA,根据PCR试剂盒(TaKaRa)操作步骤,检测IL-6和CCL3的mRNA水平。引物由上海生工生物工程股份有限公司合成(表1)。

表1.

引物序列

Tab.1 Primers Sequence

Primers Forward (5'-3') Reverse (5'-3')
IL-6 TCTATACCACTTCACAAGTCGGA GAATTGCCATTGCACAACTCTTT
CCL3 CTCCCAGCCAGGTGTCATTTT CTTGGACCCAGGTCTCTTTGG
GAPDH TGGCCTTCCGTGTTCCTAC GAGTTGCTGTTGAAGTCGCA

1.5. 免疫印迹

黏膜组织和细胞中的总蛋白经RIPA裂解液提取,再经蛋白变性、电泳和转膜。经封闭后的膜与一抗[ZO1(1∶1000)、Claudin-1(1∶1000)、cleaved caspase 3(1∶1000,CST)、Bax(1∶1000,abcam)、Bcl2(1∶1000,abcam)、p-PI3K(1:1000,CST)、PI3K(1∶1000,CST)、 p-AKT(1∶1000,proteintech)、AKT(1∶1000,proteintech)]和二抗[辣根酶标记山羊抗兔/鼠IgG(H+L),ZSGB-BIO;1∶3000]孵育,最后经底物显色和采集图片。

1.6. 免疫荧光染色

Caco-2细胞爬片和结肠组织石蜡切片分别经固定与破膜和脱蜡与抗原修复后,再经封闭、一抗ZO1(1∶400,Thermo Fisher Scientific)和Claudin-1(1∶500,abcam)]和二抗[山羊抗小鼠/兔IgG H&L(FITC) (1∶1000,abcam)]孵育后,最后经DAPI(2 μg/mL,Sigma)对细胞核进行染色和激光共聚焦显微镜采集图片。

1.7. 评估肠炎症状

TNBS造模和取检当日称量小鼠的质量,计算体质量变化。疾病活动指数(DAI)评分主要是根据小鼠体质量指数、粪便形状和便血情况进行评估17

1.8. HE染色和炎症评分

脱蜡后的小鼠结肠组织石蜡切片(4 μm厚)经苏木素、伊红染色和中性树脂封片,置于显微镜下采集图片。依据文献报道标准对结肠组织进行炎症评分18

1.9. 上皮电阻(TEER)检测

体内TEER检测15:小鼠新鲜结肠沿肠系膜轴线裁剪为2.8 mm×11 mm置于Krebs缓冲液中,并放入Ussing chamber system(Sigma)中测量TEER。体外TEER检测16:将Caco-2细胞(2×104/cm2)接种到Transwell小室(0.4 μm,corning)中,经TNF-α和STM干预后,通过Millicell ERS-2电压电阻表(Millipore)测定TEER。

1.10. 统计学分析

计量资料表示为均数±标准差,组间差异采用t检验或单因素方差分析,所有实验至少重复3次。P<0.05认为差异具有统计学意义。

2. 结果

2.1. Swertiamarin抑制肠上皮细胞的凋亡

TNF-α组的Caco-2中Tunel阳性数比例明显增高,而经STM干预后显著下降(P<0.05,图1A、B)。免疫印迹检测结果显示,STM组c-caspase3和Bax的表达低于TNF-α组,而Bcl2的水平则升高(图1C~E,P<0.05)。

图1.

图1

STM对TNF-α诱导的Caco-2细胞凋亡的影响

Fig.1 Effect of STM on TNF-α-induced apoptosis in Caco-2 cells. A, B: Representative images of TUNEL staining and statistical analysis of the positively stained cells. C-F: Levels of c-caspase 3, Bax and Bcl2 detected by Western blotting. *P<0.05 vs Control group/WT group. # P<0.05 vs TNF-α group.

2.2. Swertiamarin保护肠上皮细胞的通透性和抑制促炎介质的释放

TEER结果显示,STM干预后恢复了因TNF-α刺激导致的Caco-2细胞TEER值的下降(图2A,P<0.05)。免疫荧光和免疫印迹结果显示,ZO1和claudin 1在TNF-α组的水平显著低于Con组,而其表达在STM组中明显增多(图2B~E,P<0.05)。另外,qRT-PCR和ELISA结果显示,相对于TNF-α组,IL-6和CCL3的表达大幅度降低(图2F~I,P<0.05)。

图2.

图2

STM对TNF-α诱导的Caco-2细胞的屏障和炎症反应的影响

Fig.2 Effect of STM on TNF-α-induced barrier dysfunction and inflammatory responses in Caco-2 cells. A: Detection of TEER values. B: Immunofluorescence staining of ZO1 and claudin 1. C-E: Levels of ZO1 and claudin 1 detected by Western blotting. F, G: qRT-PCR for detecting expressions of IL-6 and CCL3. H, I: Levels of IL-6 and CCL3 detected by ELISA. *P<0.05 vs Control group, WT group. # P<0.05 vs TNF-α group.

2.3. Swertiamarin改善小鼠实验性结肠炎

小鼠体质量统计显示,STM干预后改善了TNBS诱导小鼠体质量的下降(图3A,P<0.05)。相对于TNBS组,疾病活动指数(DAI)评分显著降低(图3B,P<0.05)。另外,HE染色发现,STM治疗后缓解了结肠组织中炎症细胞的浸润和炎症评分(图1C、D,P<0.05)。最后,对小鼠肠黏膜组织进行qRT-PCR和ELISA检测,发现STM组中IL-6和CCL3的水平明显低于TNBS组(图1E~H,P<0.05)。

图3.

图3

STM对TNBS诱导小鼠的实验性结肠炎影响

Fig.3 Effect of STM on TNBS-induced CD-like colitis in mice. A: Body weight changes of the mice. B: DAI score. C, D: HE staining and inflammation score of the colonic tissue. E, F: qRT-PCR for detecting mRNA expressions of IL-6 and CCL3. G, H: Levels of IL-6 and CCL3 detected by ELISA. *P<0.05 vs WT group. # P<0.05 vs TNBS group.

2.4. Swertiamarin保护小鼠实验性结肠炎的肠屏障功能

STM组小鼠血清中FD4水平低于TNBS组(P<0.05,图4A)。STM组小鼠的结肠组织电阻抗值明显高于TNBS组(图4B,P<0.05)。细菌移位结果显示,小鼠肠道群集移位至肠淋巴结、脾和肝脏中细菌比例下降(图4C~E,P<0.05)。此外,对小鼠结肠组织进行免疫荧光染色,发现TNBS组中ZO1和Claudin 1在上皮细胞表面和总体表达水平均降低,而其在STM组中部分恢复于上皮细胞表面,以及表达有所增多(图4F)。免疫印迹检测也发现ZO1和Claudin 1经STM治疗后显著升高(图4G~I,P<0.05)。

图4.

图4

STM对TNBS诱导小鼠肠屏障的影响

Fig.4 Effect of STM on intestinal barrier in TNBS-induced mice. A: Intestinal barrier permeability assay. B: TEER analysis of the colonic tissues. C-E: Assessment of the percentage of bacterial translocation in the intestinal lymph nodes, spleen and liver. F: Immunofluorescence staining of ZO1 and claudin 1. G-I: Levels of ZO1 and claudin 1 detected by Western blotting. *P<0.05 vs WT group. # P<0.05 vs TNBS group.

2.5. Swertiamarin抑制实验性结肠炎小鼠肠上皮细胞凋亡

对小鼠结肠组织行TUNEL染色显示,TUNEL阳性细胞在TNBS组中增多,而在STM组中显著降低(图5A、B,P<0.05)。另外,免疫印迹结果发现,STM组小鼠肠黏膜组织中cleaved-caspase 3和Bax水平相对于TNBS组降低,而Bcl2则升高(图5C~F,P<0.05)。

图5.

图5

STM对TNBS诱导小鼠结肠组织中肠上皮细胞凋亡的影响

Fig. 5 Effect of STM on apoptosis of intestinal epithelial cells in TNBS-induced mice. A, B: Representative image of TUNEL staining and statistical analysis of the positively stained intestinal epithelial cells. C-F: Levels of c-caspase 3, Bax and Bcl2 detected by Western blotting. *P<0.05 vs WT group. # P<0.05 vs TNBS group.

2.6. Swertiamarin改善实验性结肠炎可能PI3K/AKT通路有关

免疫印迹结果显示,p-PI3K和p-AKT在TNBS组小鼠结肠黏膜组织中高表达,而其在STM组中的表达受到抑制(图6A~C,P<0.05);另外,在TNF-α处理的Caco-2细胞中p-PI3K和p-AKT水平升高,经STM治疗后得到了改善(图6D~F,P<0.05)。

图6.

图6

体内外验证STM对PI3K/AKT通路的影响

Fig. 6 In vitro and in vivo experiments for validating the effect of STM on the PI3K/AKT pathway. A-C: Levels of p-PI3K, PI3K, p-AKT and AKT detected in TNF-α-induced Caco-2 cells by Western blotting. D-F: Western blotting for detecting expression levels of p-PI3K, PI3K, p-AKT and AKT in the intestinal mucosal tissues of TNBS-induced mice. *P<0.05 vs WT or Con group. # P<0.05 vs TNBS or TNF-α group.

2.7. Swertiamarin通过拮抗PI3K/AKT通路的激活缓解肠上皮细胞凋亡

Tunel染色显示,相对于STM组,PI3K/AKT通路激活剂(IGF-1)组中Tunel阳性细胞增多(图7A、B,P<0.05)。另外,免疫印迹结果发现,IGF-1组C-caspase 3和Bax水平相对于STM组升高,而Bcl2则降低 (图7C~F,P<0.05)。

图7.

图7

PI3K/AKT通路参与STM抗肠上皮细胞凋亡

Fig.7 The PI3K/AKT pathway is involved in STM-mediated inhibition of intestinal epithelial cell apoptosis. A, B: TUNEL staining and statistical analysis of the positively stained intestinal epithelial cells. C-F: Levels of c-caspase 3, Bax and Bcl2 detected by Western blotting. *P<0.05 vs STM group.

3. 讨论

药物治疗仍是临床治疗CD的主要方法,但现有药物仍存在许多毒副作用,因此迫切需要探索新的有效药物19。本研究发现STM至少部分是通过拮抗PI3K/AKT通路的激活抑制肠上皮细胞的凋亡,进而改善肠屏障功能障碍和TNBS诱导的小鼠实验性结肠炎。

研究证实,STM在神经炎症、疟原虫感染和心肌梗死等疾病中具有显著的抗炎作用20-22。据我们所知,这是首次报道STM对实验性结肠炎有保护作用,这表现在STM对TNBS诱导的结肠炎模型和TNF-α刺激的肠上皮细胞凋亡模型中炎症症状得到了改善。体重减轻、便稀、便血和直肠脱垂是实验性结肠炎小鼠常见的疾病症状2324。研究显示,STM治疗可缓解这些症状。DSS小鼠的结肠伴有充血、炎症、溃疡和粘连,以及高水平促炎介质的释放等2324,这些病理特征在STM干预后得到了显著恢复。这些结果可为STM的临床应用提供新的参考。

肠道屏障在肠道免疫系统和肠道微生物之间建立了一个缓冲区,以维持肠道黏膜的平衡,而肠道屏障受损是CD的病理性特征之一2526。我们的研究结果表明,STM在体内外研究中均证实对肠屏障通透性具有保护作用,TEER作为屏障完整性的指标,我们的数据显示单层肠上皮细胞具有强健的TEER发育,这与既往研究一致2728。然而,TNF-α刺激后,TEER严重丧失,STM治疗后可显著恢复。因为紧密连接蛋白(TJs)是构成肠屏障完整性的关键,而肠道TJs的增强有助于缓解CD的肠道炎症25。值得提出的是,我们发现STM能在很大程度上改善TNBS小鼠和TNF-α刺激的肠上皮细胞中TJs蛋白的定位正常化和表达水平。柱状肠上皮细胞单层是维持肠屏障完整性的结构基础,在CD中,病变肠段肠上皮细胞凋亡的数量明显增高,肠上皮细胞的过度凋亡会导致肠屏障紧密连接结构和功能受损2930。更深入的数据表明,STM能抑制体外和体内的肠上皮细胞的凋亡,在维持肠屏障结构完整性方面发挥着重要作用。以上的数据提示,STM具有拮抗肠上皮细胞的凋亡和改善肠屏障完整性的作用,然而相关分子机制还需要进一步探索。

PI3K/AKT信号在TNBS诱导的小鼠结肠炎中被激活,并正向调节肠上皮细胞的凋亡3132。我们的数据显示,STM在TNBS诱导的结肠炎和TNF-α刺激的肠上皮细胞模型中干扰PI3K/AKT信号的激活,这与STM改善中度2型糖尿病中糖代谢和四氯化碳(CCl4)诱导的肝损伤中抗凋亡调控机制相一致1233。更重要的是,在体内和体外研究中,PI3K/AKT信号激活剂拮抗了对肠上皮细胞凋亡的保护作用。因此,STM对CD样结肠炎的改善作用可能至少部分涉及PI3K/AKT信号通路。

为了评估STM改善IBD炎症的作用,我们利用已报道的TNBS诱导的结肠炎小鼠模型和TNF-α诱导的肠上皮细胞凋亡模型进行了体外和体内验证。结果表明,STM能抑制肠上皮细胞凋亡,保护肠屏障,同时表现出显著的抗炎活性。目前,CD的治疗仍以抗生素、生物制剂等药物为主,但长期使用会导致严重的并发症(如感染、恶性肿瘤、骨质疏松、肝脏毒性等)34。天然中药单体对CD的保护作用已逐渐引起更多研究者的关注35。STM是从龙胆科植物斜茎獐牙菜中分离而得的一种天然成分,与传统药物相比,其毒性和整体生物利用度较低。本研究发现STM具有抗结肠炎作用,表明其有可能应用于CD临床治疗的可能潜力。

本文的局限性有:虽然有报道称在TNBS诱导的小鼠模型中出现了类似CD样肠炎,但与人类CD病变有所不同,需要新的理想模型3637;本文的研究仅关注STM对肠上皮细胞的抗凋亡作用及相关的PI3K/AKT信号传导,但不能排除STM抗肠炎作用的其他途径或机制。

总之,结合体内和体外研究证实,STM通过抑制肠上皮细胞凋亡,保护肠道屏障并改善肠道炎症,至少部分是通过抑制PI3K/AKT信号传导有关。本研究从保护肠道屏障的角度丰富了CD治疗的证据,肠上皮细胞的过度凋亡有望成为潜在的治疗靶点。

基金资助

安徽省高校优秀青年基金(2022AH030138);安徽省自然科学基金(2308085MH241);安徽省学术和技术带头人及后备人选科研活动经费资助项目(2021D299)

参考文献

  • 1. Roda G, Chien Ng S, Kotze PG, et al. Crohn’s disease[J]. Nat Rev Dis Primers, 2020, 6(1): 22. [DOI] [PubMed] [Google Scholar]
  • 2. Ananthakrishnan AN, Bernstein CN, Iliopoulos D, et al. Environmental triggers in IBD: a review of progress and evidence[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(1): 39-49. [DOI] [PubMed] [Google Scholar]
  • 3. Lo BC, Shin SB, Canals Hernaez D, et al. IL-22 preserves gut epithelial integrity and promotes disease remission during chronic Salmonella infection[J]. J Immunol, 2019, 202(3): 956-65. [DOI] [PubMed] [Google Scholar]
  • 4. Deng FH, Peng L, Li ZJ, et al. YAP triggers the Wnt/β-catenin signalling pathway and promotes enterocyte self-renewal, regeneration and tumorigenesis after DSS-induced injury[J]. Cell Death Dis, 2018, 9(2): 153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Stremmel W, Staffer S, Schneider MJ, et al. Genetic mouse models with intestinal-specific tight junction deletion resemble an ulcerative colitis phenotype[J]. J Crohns Colitis, 2017, 11(10): 1247-57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Woznicki JA, Saini, Flood P, et al. TNF-α synergises with IFN-γ to induce caspase-8-JAK1/2-STAT1-dependent death of intestinal epithelial cells[J]. Cell Death Dis, 2021, 12(10): 864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Dotti I, Mora-Buch R, Ferrer-Picón E, et al. Alterations in the epithelial stem cell compartment could contribute to permanent changes in the mucosa of patients with ulcerative colitis[J]. Gut, 2017, 66(12): 2069-79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Zhang J, Cen L, Zhang XF, et al. MPST deficiency promotes intestinal epithelial cell apoptosis and aggravates inflammatory bowel disease via AKT[J]. Redox Biol, 2022, 56: 102469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Lei H, Yang L, Xu HZ, et al. Ubiquitin-specific protease 47 regulates intestinal inflammation through deubiquitination of TRAF6 in epithelial cells[J]. Sci China Life Sci, 2022, 65(8): 1624-35. [DOI] [PubMed] [Google Scholar]
  • 10. Zhao S, Dejanovic D, Yao P, et al. Selective deletion of MyD88 signaling in α‑SMA positive cells ameliorates experimental intestinal fibrosis via post-transcriptional regulation[J]. Mucosal Immunol, 2020, 13(4): 665-78. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Mao R, Doyon G, Gordon IO, et al. Activated intestinal muscle cells promote preadipocyte migration: a novel mechanism for creeping fat formation in Crohn's disease[J]. Gut, 2022, 71(1): 55-67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Zhang QR, Chen K, Wu T, et al. Swertiamarin ameliorates carbon tetrachloride-induced hepatic apoptosis via blocking the PI3K/Akt pathway in rats[J]. Korean J Physiol Pharmacol, 2019, 23(1): 21-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Saravanan S, Islam VI, Thirugnanasambantham K, et al. Swertiamarin ameliorates inflammation and osteoclastogenesis intermediates in IL-1β induced rat fibroblast-like synoviocytes[J]. Inflamm Res, 2014, 63(6): 451-62. [DOI] [PubMed] [Google Scholar]
  • 14. Yang WJ, Han FH, Gu YP, et al. TGR5 agonist inhibits intestinal epithelial cell apoptosis via cAMP/PKA/c-FLIP/JNK signaling pathway and ameliorates dextran sulfate sodium-induced ulcerative colitis[J]. Acta Pharmacol Sin, 2023, 44(8): 1649-64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Li R, Shi CR, Wei CT, et al. Fufang Shenhua Tablet inhibits renal fibrosis by inhibiting PI3K/AKT[J]. Phytomedicine, 2023, 116: 154873. [DOI] [PubMed] [Google Scholar]
  • 16. Zuo LG, Geng ZJ, Song X, et al. Browning of mesenteric white adipose tissue in Crohn's disease: a new pathological change and therapeutic target[J]. J Crohns Colitis, 2023, 17(8): 1179-92. [DOI] [PubMed] [Google Scholar]
  • 17. Huang LY, Qian WW, Xu YH, et al. Mesenteric adipose tissue contributes to intestinal fibrosis in Crohn's disease through the ATX-LPA axis[J]. J Crohns Colitis, 2022, 16(7): 1124-39. [DOI] [PubMed] [Google Scholar]
  • 18. Shi YJ, Sheng WJ, Xue MT, et al. Effect of morroniside on the transcriptome profiles of rat in injured spinal cords[J]. Gene, 2022, 823: 146338. [DOI] [PubMed] [Google Scholar]
  • 19. Kucharzik T, Ellul P, Greuter T, et al. ECCO guidelines on the prevention, diagnosis, and management of infections in inflammatory bowel disease[J]. J Crohns Colitis, 2021, 15(6): 879-913. [DOI] [PubMed] [Google Scholar]
  • 20. Wang T, Wu SB, Ibrahim IAA, et al. Cardioprotective role of swertiamarin, a plant glycoside against experimentally induced myocardial infarction via antioxidant and anti-inflammatory functions[J]. Appl Biochem Biotechnol, 2023, 195(9): 5394-408. [DOI] [PubMed] [Google Scholar]
  • 21. Wang GW, Quan J, Su NR, et al. Proteomic analysis of swertiamarin-treated BV-2 cells and possible implications in neuroinflammation[J]. J Oleo Sci, 2022, 71(3): 395-400. [DOI] [PubMed] [Google Scholar]
  • 22. Patel N, Zinzuvadia A, Prajapati M, et al. Swertiamarin-mediated immune modulation/adaptation confers protection against Plasmodium berghei [J]. Future Microbiol, 2022, 17: 931-41. [DOI] [PubMed] [Google Scholar]
  • 23. Okayasu I, Hatakeyama S, Yamada M, et al. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice[J]. Gastroenterology, 1990, 98(3): 694-702. [DOI] [PubMed] [Google Scholar]
  • 24. Gäbele E, Dostert K, Hofmann C, et al. DSS induced colitis increases portal LPS levels and enhances hepatic inflammation and fibrogenesis in experimental NASH[J]. J Hepatol, 2011, 55(6): 1391-9. [DOI] [PubMed] [Google Scholar]
  • 25. Dong LJ, Xie JW, Wang YY, et al. Mannose ameliorates experimental colitis by protecting intestinal barrier integrity[J]. Nat Commun, 2022, 13(1): 4804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Kinchen J, Chen HH, Parikh K, et al. Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease[J]. Cell, 2018, 175(2): 372-86.e17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Varani J, McClintock SD, Aslam MN. Cell-matrix interactions contribute to barrier function in human colon organoids[J]. Front Med, 2022, 9: 838975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Jelinsky SA, Derksen M, Bauman E, et al. Molecular and functional characterization of human intestinal organoids and monolayers for modeling epithelial barrier[J]. Inflamm Bowel Dis, 2023, 29(2): 195-206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Chen SB, Liu HB, Li ZJ, et al. Epithelial PBLD attenuates intestinal inflammatory response and improves intestinal barrier function by inhibiting NF-κB signaling[J]. Cell Death Dis, 2021, 12(6): 563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Kuo WT, Shen L, Zuo L, et al. Inflammation-induced occludin downregulation limits epithelial apoptosis by suppressing caspase-3 expression[J]. Gastroenterology, 2019, 157(5): 1323-37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Li CC, Gong LQ, Jiang Y, et al. Sanguisorba officinalis ethyl acetate extract attenuates ulcerative colitis through inhibiting PI3K-AKT/NF‑κB/STAT3 pathway uncovered by single-cell RNA sequencing[J]. Phytomedicine, 2023, 120: 155052. [DOI] [PubMed] [Google Scholar]
  • 32. Kim SM, Park S, Hwang SH, et al. Secreted Akkermansia muciniphila threonyl-tRNA synthetase functions to monitor and modulate immune homeostasis[J]. Cell Host Microbe, 2023, 31(6): 1021-37.e10. [DOI] [PubMed] [Google Scholar]
  • 33. Ma WJ, Long JL, Dong LJ, et al. Uncovering the key pharmacodynamic material basis and possible molecular mechanism of Xiaoke formulation improve insulin resistant through a comprehensive investigation[J]. J Ethnopharmacol, 2024, 323: 117752. [DOI] [PubMed] [Google Scholar]
  • 34. Stein J, Aksan A, Farrag K, et al. Management of inflammatory bowel disease-related anemia and iron deficiency with specific reference to the role of intravenous iron in current practice[J]. Expert Opin Pharmacother, 2017, 18(16): 1721-37. [DOI] [PubMed] [Google Scholar]
  • 35. Guo BJ, Bian ZX, Qiu HC, et al. Biological and clinical implications of herbal medicine and natural products for the treatment of inflammatory bowel disease[J]. Ann N Y Acad Sci, 2017, 1401(1): 37-48. [DOI] [PubMed] [Google Scholar]
  • 36. Wan P, Zhu XD, Liu XP, et al. Inhibition of neddylation ameliorates DSS-induced colitis[J]. Cell Mol Immunol, 2018, 15(6): 649-50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Mizuta Y, Isomoto H, Takahashi T. Impaired nitrergic innervation in rat colitis induced by dextran sulfate sodium[J]. Gastroenterology, 2000, 118(4): 714-23. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES