Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Jan 1;297(Pt 1):157–162. doi: 10.1042/bj2970157

Characterization of gamma- and delta-subunits of Ca2+/calmodulin-dependent protein kinase II in rat gastric mucosal cell populations.

P Mayer 1, M Möhlig 1, U Seidler 1, H Rochlitz 1, M Fährmann 1, H Schatz 1, H Hidaka 1, A Pfeiffer 1
PMCID: PMC1137805  PMID: 8280094

Abstract

We searched for the occurrence of a Ca2+/calmodulin-dependent protein kinase in rat gastric cell types as a likely member in the chain of gastrin- and muscarinic-receptor-mediated signal transmission. A Ca(2+)- and calmodulin-dependent phosphorylation of major 50, 60 and 100 kDa substrates was observed in parietal cell cytosol and a major 60 and 61 kDa protein doublet was found to bind 125I-calmodulin in 125I-calmodulin-gel overlays. A specific substrate of the multifunctional Ca2+/calmodulin-dependent protein kinase II, autocamtide II, was phosphorylated in a calmodulin-dependent manner. The specific inhibitor of this enzyme, KN-62, antagonized protein kinase activity. RNA extracted from gastric mucosal cells was shown to contain sequences of the gamma- and delta- but not alpha- and beta-subunits of the calmodulin-dependent kinase II, and mRNA of both subtypes was demonstrated in highly purified parietal, chief and mucous cells. A calmodulin-dependent kinase II composed of gamma- and delta-subunits is a likely mediator of Ca(2+)-dependent signal transmission in these populations of gastric cells.

Full text

PDF
157

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett M. K., Kennedy M. B. Deduced primary structure of the beta subunit of brain type II Ca2+/calmodulin-dependent protein kinase determined by molecular cloning. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1794–1798. doi: 10.1073/pnas.84.7.1794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berridge M. J. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem. 1987;56:159–193. doi: 10.1146/annurev.bi.56.070187.001111. [DOI] [PubMed] [Google Scholar]
  3. Chew C. S., Brown M. R. Release of intracellular Ca2+ and elevation of inositol trisphosphate by secretagogues in parietal and chief cells isolated from rabbit gastric mucosa. Biochim Biophys Acta. 1986 Aug 29;888(1):116–125. doi: 10.1016/0167-4889(86)90077-7. [DOI] [PubMed] [Google Scholar]
  4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  5. Colbran R. J., Schworer C. M., Hashimoto Y., Fong Y. L., Rich D. P., Smith M. K., Soderling T. R. Calcium/calmodulin-dependent protein kinase II. Biochem J. 1989 Mar 1;258(2):313–325. doi: 10.1042/bj2580313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fukunaga K., Goto S., Miyamoto E. Immunohistochemical localization of Ca2+/calmodulin-dependent protein kinase II in rat brain and various tissues. J Neurochem. 1988 Oct;51(4):1070–1078. doi: 10.1111/j.1471-4159.1988.tb03070.x. [DOI] [PubMed] [Google Scholar]
  7. Funasaka M., Fox L. M., Tang L. H., Modlin I. M., Goldenring J. R. The major calmodulin-binding protein in rabbit parietal cells is Ca2+/calmodulin-dependent protein kinase II. Biochem Int. 1992 Sep;27(6):1101–1109. [PubMed] [Google Scholar]
  8. Hanson P. I., Kapiloff M. S., Lou L. L., Rosenfeld M. G., Schulman H. Expression of a multifunctional Ca2+/calmodulin-dependent protein kinase and mutational analysis of its autoregulation. Neuron. 1989 Jul;3(1):59–70. doi: 10.1016/0896-6273(89)90115-3. [DOI] [PubMed] [Google Scholar]
  9. Herman B., Nieminen A. L., Gores G. J., Lemasters J. J. Irreversible injury in anoxic hepatocytes precipitated by an abrupt increase in plasma membrane permeability. FASEB J. 1988 Feb;2(2):146–151. doi: 10.1096/fasebj.2.2.3342967. [DOI] [PubMed] [Google Scholar]
  10. Kameshita I., Fujisawa H. Phosphorylation and functional modification of calmodulin-dependent protein kinase IV by cAMP-dependent protein kinase. Biochem Biophys Res Commun. 1991 Oct 15;180(1):191–196. doi: 10.1016/s0006-291x(05)81275-6. [DOI] [PubMed] [Google Scholar]
  11. Kuret J., Schulman H. Purification and characterization of a Ca2+/calmodulin-dependent protein kinase from rat brain. Biochemistry. 1984 Nov 6;23(23):5495–5504. doi: 10.1021/bi00318a018. [DOI] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Lin C. R., Kapiloff M. S., Durgerian S., Tatemoto K., Russo A. F., Hanson P., Schulman H., Rosenfeld M. G. Molecular cloning of a brain-specific calcium/calmodulin-dependent protein kinase. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5962–5966. doi: 10.1073/pnas.84.16.5962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McGuinness T. L., Lai Y., Greengard P. Ca2+/calmodulin-dependent protein kinase II. Isozymic forms from rat forebrain and cerebellum. J Biol Chem. 1985 Feb 10;260(3):1696–1704. [PubMed] [Google Scholar]
  15. Miyano O., Kameshita I., Fujisawa H. Purification and characterization of a brain-specific multifunctional calmodulin-dependent protein kinase from rat cerebellum. J Biol Chem. 1992 Jan 15;267(2):1198–1203. [PubMed] [Google Scholar]
  16. Nairn A. C., Bhagat B., Palfrey H. C. Identification of calmodulin-dependent protein kinase III and its major Mr 100,000 substrate in mammalian tissues. Proc Natl Acad Sci U S A. 1985 Dec;82(23):7939–7943. doi: 10.1073/pnas.82.23.7939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nishimura H., Fukunaga K., Okamura H., Miyamoto E. Purification of the multifunctional calmodulin-dependent protein kinases from lung and liver, and the comparison to the brain enzyme. Jpn J Pharmacol. 1988 Feb;46(2):173–182. doi: 10.1254/jjp.46.173. [DOI] [PubMed] [Google Scholar]
  18. Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature. 1988 Aug 25;334(6184):661–665. doi: 10.1038/334661a0. [DOI] [PubMed] [Google Scholar]
  19. Nygård O., Nilsson A., Carlberg U., Nilsson L., Amons R. Phosphorylation regulates the activity of the eEF-2-specific Ca(2+)- and calmodulin-dependent protein kinase III. J Biol Chem. 1991 Sep 5;266(25):16425–16430. [PubMed] [Google Scholar]
  20. Oddsdottir M., Modlin I. M., Zucker K. A., Zdon M. J., Goldenring J. R. A calmodulin dependent protein kinase in parietal cells. Biochem Biophys Res Commun. 1987 Nov 13;148(3):1390–1397. doi: 10.1016/s0006-291x(87)80286-3. [DOI] [PubMed] [Google Scholar]
  21. Pfeiffer A., Paumgartner G., Herz A. Muscarinic M2-receptors enhance polyphosphoinositol release in rat gastric mucosal cells. FEBS Lett. 1986 Aug 18;204(2):352–356. doi: 10.1016/0014-5793(86)80842-0. [DOI] [PubMed] [Google Scholar]
  22. Pfeiffer A., Rochlitz H., Herz A., Paumgartner G. Stimulation of acid secretion and phosphoinositol production by rat parietal cell muscarinic M2 receptors. Am J Physiol. 1988 Apr;254(4 Pt 1):G622–G629. doi: 10.1152/ajpgi.1988.254.4.G622. [DOI] [PubMed] [Google Scholar]
  23. Puurunen J., Schwabe U. Effect of gastric secretagogues on the formation of inositol phosphates in isolated gastric cells of the rat. Br J Pharmacol. 1987 Mar;90(3):479–490. doi: 10.1111/j.1476-5381.1987.tb11197.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Roush C. L., Kennelly P. J., Glaccum M. B., Helfman D. M., Scott J. D., Krebs E. G. Isolation of the cDNA encoding rat skeletal muscle myosin light chain kinase. Sequence and tissue distribution. J Biol Chem. 1988 Jul 25;263(21):10510–10516. [PubMed] [Google Scholar]
  25. Schulman H., Lou L. L. Multifunctional Ca2+/calmodulin-dependent protein kinase: domain structure and regulation. Trends Biochem Sci. 1989 Feb;14(2):62–66. doi: 10.1016/0968-0004(89)90045-5. [DOI] [PubMed] [Google Scholar]
  26. Seidler U., Beinborn M., Sewing K. F. Inhibition of acid formation in rabbit parietal cells by prostaglandins is mediated by the prostaglandin E2 receptor. Gastroenterology. 1989 Feb;96(2 Pt 1):314–320. doi: 10.1016/0016-5085(89)91553-9. [DOI] [PubMed] [Google Scholar]
  27. Seidler U., Carter K., Ito S., Silen W. Effect of CO2 on pHi in rabbit parietal, chief, and surface cells. Am J Physiol. 1989 Mar;256(3 Pt 1):G466–G475. doi: 10.1152/ajpgi.1989.256.3.G466. [DOI] [PubMed] [Google Scholar]
  28. Seidler U., Pfeiffer A. Inositol phosphate formation and [Ca2+]i in secretagogue-stimulated rabbit gastric mucous cells. Am J Physiol. 1991 Jan;260(1 Pt 1):G133–G141. doi: 10.1152/ajpgi.1991.260.1.G133. [DOI] [PubMed] [Google Scholar]
  29. Shenolikar S., Lickteig R., Hardie D. G., Soderling T. R., Hanley R. M., Kelly P. T. Calmodulin-dependent multifunctional protein kinase. Evidence for isoenzyme forms in mammalian tissues. Eur J Biochem. 1986 Dec 15;161(3):739–747. doi: 10.1111/j.1432-1033.1986.tb10502.x. [DOI] [PubMed] [Google Scholar]
  30. Slaughter G. R., Means A. R. Use of the 125I-labeled protein gel overlay technique to study calmodulin-binding proteins. Methods Enzymol. 1987;139:433–444. doi: 10.1016/0076-6879(87)39104-9. [DOI] [PubMed] [Google Scholar]
  31. Tobimatsu T., Fujisawa H. Tissue-specific expression of four types of rat calmodulin-dependent protein kinase II mRNAs. J Biol Chem. 1989 Oct 25;264(30):17907–17912. [PubMed] [Google Scholar]
  32. Tobimatsu T., Kameshita I., Fujisawa H. Molecular cloning of the cDNA encoding the third polypeptide (gamma) of brain calmodulin-dependent protein kinase II. J Biol Chem. 1988 Nov 5;263(31):16082–16086. [PubMed] [Google Scholar]
  33. Tokumitsu H., Chijiwa T., Hagiwara M., Mizutani A., Terasawa M., Hidaka H. KN-62, 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazi ne, a specific inhibitor of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 1990 Mar 15;265(8):4315–4320. [PubMed] [Google Scholar]
  34. Tsunoda Y., Funasaka M., Modlin I. M., Hidaka H., Fox L. M., Goldenring J. R. An inhibitor of Ca2+/calmodulin-dependent protein kinase II, KN-62, inhibits cholinergic-stimulated parietal cell secretion. Am J Physiol. 1992 Jan;262(1 Pt 1):G118–G122. doi: 10.1152/ajpgi.1992.262.1.G118. [DOI] [PubMed] [Google Scholar]
  35. Yamamoto H., Fukunaga K., Goto S., Tanaka E., Miyamoto E. Ca2+, calmodulin-dependent regulation of microtubule formation via phosphorylation of microtubule-associated protein 2, tau factor, and tubulin, and comparison with the cyclic AMP-dependent phosphorylation. J Neurochem. 1985 Mar;44(3):759–768. doi: 10.1111/j.1471-4159.1985.tb12880.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES