Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2024 Aug 20;44(8):1553–1560. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2024.08.14

双氢青蒿素通过促进活性氧的产生增强鼻咽癌细胞对顺铂诱导凋亡的敏感性

Dihydroartemisinin enhances sensitivity of nasopharyngeal carcinoma HNE1/DDP cells to cisplatin-induced apoptosis by promoting ROS production

CONG Xiaofan 1,1, CHEN Teng 1, LI Shuo 1, WANG Yuanyuan 1, ZHOU Longyun 1, LI Xiaolong 1, ZHANG Pei 1, SUN Xiaojin 1,, ZHAO Surong 1,
Editor: 郎 朗
PMCID: PMC11378052  PMID: 39276051

Abstract

Objective

To investigate the effect of dihydroartemisinin (DHA) for enhancing the inhibitory effect of cisplatin (DDP) on DDP-resistant nasopharyngeal carcinoma cell line HNE1/DDP and explore the mechanism.

Methods

CCK-8 method was used to assess the survival rate of HNE1/DDP cells treated with DHA (0, 5, 10, 20, 40, 80, and 160 μmol/L) and DDP (0, 4, 8, 16, 32, 64, 128 μmol/L) for 24 or 48 h, and the combination index of DHA and DDP was calculated using Compusyn software. HNE1/DDP cells treated with DHA, DDP, or their combination for 24 h were examined for cell viability, proliferation and colony formation ability using CCK-8, EdU and colony-forming assays. Flow cytometry was used to detect cell apoptosis and intracellular reactive oxygen species (ROS). The expression levels of apoptosis-related proteins cleaved PARP, cleaved caspase-9 and cleaved caspase-3 were detected by Western blotting. The effects of N-acetyl-cysteine (a ROS inhibitor) on proliferation and apoptosis of HNE1/DDP cells with combined treatment with DHA and DDP were analyzed.

Results

Different concentrations of DHA and DDP alone both significantly inhibited the viability of HNE1/DDP cells. The combination index of DHA (5 μmol/L) combined with DDP (8, 16, 32, 64, 128 μmol/L) were all below 1. Compared with DHA or DDP alone, their combined treatment more potently decreased the cell viability, colony-forming ability and the number of EdU-positive cells, and significantly increased the apoptotic rate, intracellular ROS level, and the expression levels of cleaved PARP, cleaved caspase-9 and cleaved caspase-3 in HNE1/DDP cells. N-acetyl-cysteine pretreatment obviously attenuated the inhibitory effect on proliferation and apoptosis-inducing effect of DHA combined with DDP in HNE1/DDP cells (P<0.01).

Conclusion

DHA enhances the growth-inhibitory and apoptosis-inducing effect of DDP on HNE1/DDP cells possibly by promoting accumulation of intracellular ROS.

Keywords: nasopharyngeal carcinoma, dihydroartemisinin, cisplatin, reactive oxygen species, proliferation, apoptosis


鼻咽癌起源于鼻咽上皮,常伴有局部侵袭和早期远处转移1,在东南亚和中国南部地区发病率较高23。目前放疗联合顺铂(DDP)化疗仍然是鼻咽癌的主要治疗方法4。尽管放化疗联合治疗获得了令人满意的5年生存率(85%~90%)5,但仍有8%~10%的患者复发并发生肿瘤转移6。对于复发性鼻咽癌患者,目前的标准治疗方法是使用铂类药物进行多药化疗。然而,DDP作为鼻咽癌的常用化疗药物,具有较强的肝、肾、神经和心脏毒性7,部分发生转移的患者通常会产生对DDP的耐药8。因此,迫切需要寻找高效低毒的新型治疗方法。

近年研究表明,天然化合物作为潜在的抗癌药物或增敏剂受到了广泛关注9。青蒿素是从黄花蒿叶中提取的倍半萜内酯,其活性衍生物包括双氢青蒿素(DHA)、青蒿琥酯和蒿甲醚10。除了抗疟疾作用,DHA表现出明显的肿瘤细胞选择性,对正常细胞的毒性极低11。DHA通过调节活性氧(ROS)生成、诱导癌细胞凋亡和细胞周期阻滞的方式,发挥抑制癌细胞增殖、生长、转移和血管形成的作用12-14。然而,DHA能否在DDP耐药的鼻咽癌细胞株 HNE1/DDP中促进ROS产生并诱导细胞凋亡还缺乏相关研究。此外,DHA还可以作为增敏剂与其他化疗药物联合使用,以提高化疗疗效15。有研究表明,DHA不仅能够通过激活ROS介导的多种信号通路增强DDP诱导的非小细胞肺癌细胞死亡16,还能增强DDP对神经母细胞瘤细胞的生长抑制作用17,但DHA增强DDP在HNE1/DDP细胞中的抗肿瘤作用尚未见报道。将DHA与传统化疗药物联合使用可能成为一种新的治疗策略。

本研究观察DHA联合DDP对人鼻咽癌HNE1/ DDP细胞增殖、凋亡的影响,探讨其抗肿瘤的作用以及使HNE1/ DDP细胞恢复凋亡敏感性的分子机制,以期为鼻咽癌的临床治疗提供参考依据。

1. 材料和方法

1.1. 试剂与仪器

DHA(纯度98.0%)、DDP(纯度99.84%)(MCE)。RPMI 1640基础培养基(普诺赛),1%青霉素-链霉素(Servicebio),胎牛血清(FBS)、胰酶细胞消化液(Biosharp),CCK-8试剂盒(APE×BIO),Annexin V-FITC/PI双染细胞凋亡检测试剂盒(贝博生物),N-乙酰半胱氨酸(NAC,纯度99.0%)、BeyoClick™ EdU-594细胞增殖检测试剂盒、ROS检测试剂盒(碧云天),Cleaved Caspase-9(Asp330)、Cleaved Caspase-3(Asp175)抗体(Cell Signaling Technology),PARP抗体(Abmart),GAPDH抗体(Proteintech),Goat anti-Rabbit IgG (H+L)-HRP抗体(Bioworld)。

BioTek酶标仪(Synergy HT),Obsever Z1高端全电动倒置荧光显微镜(ZEISS),CytoFLEX流式细胞分析仪(BACKMAN COULTER),Mini-Prote电泳仪及凝胶成像分析系统(Bio-Rad)。

1.2. 方法

1.2.1. 细胞培养

DDP耐药的鼻咽癌细胞株 HNE1/DDP 及其亲本细胞株HNE1均购自中南大学湘雅医学院。细胞培养于含有10% FBS,1%青霉素-链霉素的RPMI 1640完全培养基中,在培养基中加入DDP(1 μg/mL)维持细胞的耐药性,置于37 ℃、5% CO2 的培养箱中常规传代培养。

1.2.2. CCK-8实验检测细胞活力

取对数生长期的HNE1和HNE1/DDP 细胞,按照每孔5×103个细胞的密度接种于96孔培养板中。待细胞密度达到70%~80%时,分别添加含有DHA(终浓度为0、5、10、20、40、80、160 μmol/L)、DDP(终浓度为0、4、8、16、32、64、128 μmol/L)及DHA联合DDP(DDP终浓度为0、4、8、16、32、64、128 μmol/L,DHA终浓度为5 μmol/L)的新鲜培养基,每组设置6个复孔,继续培养24、48 h后,每孔加入10 μL CCK-8工作液,置于培养箱中孵育0.5~1 h。使用酶标仪在450 nm波长处对各个孔的吸光度(A)进行测量,计算细胞存活率。细胞存活率(%)=(A 实验组-A 空白组)/(A 对照组-A 空白组)×100。计算药物半数抑制浓度(IC50)和耐药指数(RI)。采用Compusyn软件计算DHA与DDP的联合指数(CI)。

1.2.3. 集落克隆形成实验检测细胞克隆形成能力

取对数生长期的HNE1/DDP细胞,按照每孔3×103个细胞的密度接种于6孔板中,待细胞贴壁生长后,替换含有DHA(0.5 μmol/L)、DDP(3 μmol/L)以及DHA(0.5 μmol/L)联合DDP(3 μmol/L)的培养基后置于培养箱继续培养。每3 d换液并观察细胞状态,待出现肉眼可见克隆时终止培养。弃旧培养基,用PBS洗涤细胞2次,然后加入4%多聚甲醛室温固定15 min。固定完成后,加入0.5%结晶紫溶液染色15 min,最后用PBS将残余结晶紫溶液洗干净,室温晾干,拍照并使用ImageJ软件计数。

1.2.4. EdU实验检测细胞增殖能力

取对数生长期的HNE1/DDP细胞接种于共聚焦培养皿中,待细胞贴壁生长后使用DHA(5 μmol/L)、DDP(30 μmol/L)以及DHA(5 μmol/L)联合DDP(30 μmol/L)处理24 h,采用BeyoClick™ EdU-594细胞增殖检测试剂盒,将37 ℃预热的EdU工作液(10 μmol/L)加入到培养皿中继续孵育2 h。EdU标记完成后,对培养细胞进行固定、洗涤和通透。去除通透液,洗涤细胞1~2次后加入Click反应液,在室温下避光孵育30 min。使用DAPI进行细胞核染色,室温避光孵育5~10 min,染色情况用倒置荧光显微镜观察并拍照。细胞增殖能力采用EdU阳性染色细胞(红色)占总细胞(蓝色)的百分率表示。

1.2.5. Annexin Ⅴ-FITC/PI 双染检测细胞凋亡

取对数生长期的HNE1/DDP细胞,细胞以2×105/孔的密度接种于6孔板中,待细胞密度达到70%~80%时,在含或不含NAC(5 mmol/L)的情况下加入含有DHA或/和DDP的培养基,培养24 h后,1000 r/min离心5 min,弃上清收集细胞,用预冷的PBS洗涤细胞2次。向细胞中加入400 μL 1×Annexin V结合液重悬细胞,然后加入3 μL Annexin V-FITC染色液,轻柔混匀后,室温避光孵育15 min,加入5 μL PI染色液后混匀,避光孵育5 min,最后用过滤网过滤转至流式管,并用流式细胞仪进行上机检测。

1.2.6. DCFH-DA荧光探针检测细胞内ROS水平

将HNE1/DDP细胞接种于6孔板,调整细胞密度为2×105/孔。培养过夜后,将DHA或/和DDP加入细胞中孵育6 h。弃去细胞培养液,用PBS清洗2次后加入含10 μmol/L DCFH-DA的无血清细胞培养液,37 ℃细胞培养箱内孵育30 min。然后使用无血清细胞培养液洗3次,再用胰酶消化细胞并收集至离心管中,1500 r/min离心5 min,用PBS洗涤2次,最后加入400 μL PBS重悬细胞后使用流式细胞仪于488 nm激发波长处检测DCF的荧光强度。

1.2.7. Western blotting检测凋亡相关蛋白表达

将HNE1/DDP细胞以2.5×105/孔接种于6孔板,待细胞密度达到70%~80%时,在含或不含NAC(5 mmol/L)的情况下加入DHA或/和DDP处理细胞24 h。收集细胞,冰上裂解30 min,每10 min取出涡旋1次,使细胞充分裂解。4 ℃、12 000 r/min离心15 min,提取细胞总蛋白,BCA试剂盒测定各组蛋白浓度,蛋白样品中加入Loading buffer后置于金属浴中100 ℃煮沸5 min,取30 μg蛋白进行SDS-PAGE。10% SDS-PAGE电泳(80 V,30 min;120 V,60 min);转膜(300 mA,1~2 h)至PVDF膜;使用5%(w/v)的脱脂奶粉室温封闭4 h;一抗(1∶1000)4 ℃孵育过夜后回收抗体;TBST洗涤3次,10 min/次;二抗(1∶20 000)室温孵育1.5 h;TBST洗涤3次,10 min/次;最后用ECL试剂盒进行显影,使用凝胶成像系统采集图像,并通过ImageJ分析蛋白表达量。

1.3. 统计学分析

使用Graphpad Prism 8.0软件进行数据统计分析和绘图。计量资料以均数±标准差表示,多组间差异的比较采用多因素方差分析及q检验。以P<0.05为差异有统计学意义。所有实验均重复3次。

2. 结果

2.1. DDP耐药细胞株HNE1/DDP耐药性的验证

CCK-8结果显示,DDP作用24 h后,随着药物浓度增加,细胞活力逐渐下降(P<0.01),通过曲线拟合得到DDP对亲本株HNE1与耐药株HNE1/DDP细胞的IC50 值分别为13.52±0.97 μmol/L与81.51±2.74 μmol/L,RI为6.03(图1)。

图1.

图1

DDP对HNE1和HNE1/DDP细胞活力的影响

Fig.1 Effect of dihydroartemisinin (DDP) on viability of HNE1 and HNE1/DDP cells. **P<0.01 vs 0 μmol/L.

2.2. DHA或/和DDP抑制HNE1/DDP细胞活力和增殖

CCK-8结果表明,不同浓度的DHA和DDP处理24、48 h均能明显抑制HNE1/DDP细胞的活力(P<0.05,图2A、B),作用24 h的IC50分别为60.20±3.40 μmol/L、81.51±2.74 μmol/L,作用48 h的IC50分别为35.58±5.58 μmol/L、65.19±4.21 μmol/L。DHA联合不同浓度DDP对HNE1/DDP细胞的抑制作用随着DDP浓度的升高而增强(P<0.01,图2C),作用24、48 h的IC50分别为33.27±2.34 μmol/L、23.88±1.11 μmol/L。DHA(5 μmol/L)联合DDP(8、16、32、64、128 μmol/L)的CI值均小于1(图2D、E),因此选取5 μmol/L DHA和30 μmol/L DDP进行后续实验。集落克隆实验结果显示,与对照组相比,DHA组和DDP组均能明显抑制HNE1/DDP细胞集落形成,且DHA联合DDP组的抑制能力更强(P<0.01,图2F)。EdU实验结果表明,DHA组、DDP组、DHA联合DDP组EdU阳性染色细胞在总细胞中的占比明显低于对照组,且DHA联合DDP组细胞EdU阳性细胞率降低(P<0.01,图2G)。

图2.

图2

DHA或/和DDP抑制HNE1/DDP细胞活力和增殖

Fig.2 Inhibitory effects of DHA, DDP, and their combination on viability and proliferation of HNE1/DDP cells. A, B: CCK-8 assay for detecting viability of HNE1/DDP cells treated with DHA and DDP for 24 and 48 h. C: CCK-8 assay for detecting viability of HNE1/DDP cells treated with DHA (5 μmol/L) combined with DDP (0, 4, 8, 16, 32, 64, 128 μmol/L) for 24 and 48 h. *P<0.05, **P<0.01 vs 0 μmol/L. D, E: Combination index (CI) of combination treatment with DHA and DDP for 24, 48 h. F: Colony formation ability of cells treated with DHA or/and DDP for 24 h. G: EdU test for detecting proliferation of HNE1/DDP cells treated with DHA or/and DDP for 24 h (Original magnification: ×10). *P<0.05, **P<0.01 vs Control group; ## P<0.01 vs DHA group; && P<0.01 vs DDP group.

2.3. DHA联合DDP诱导HNE1/DDP细胞凋亡

采用Annexin-V FITC/PI双染检测细胞凋亡,结果显示,与对照组相比,各加药处理组细胞凋亡比例均明显增加,且DHA联合DDP时细胞凋亡率增加更显著(P<0.01,图3A)。Western blotting结果表明,与DHA和DDP组相比,DHA联合DDP组细胞Cleaved PARP、Cleaved Caspase-9、Cleaved Caspase-3蛋白表达水平升高(P<0.05,图3B)。

图3.

图3

DHA联合DDP诱导HNE1/DDP细胞凋亡

Fig.3 DHA combined with DDP more potently induces apoptosis in HNE1/DDP cells. A: Apoptosis of HNE1/DDP cells treated with DHA or/and DDP for 24 h detected by flow cytometry. B: Protein levels of cleaved PARP, cleaved caspase-9, and cleaved caspase-3 in HNE1/DDP cells detected by Western blotting. *P<0.05, **P<0.01 vs Control group; # P<0.05, ## P<0.01 vs DHA group; & P<0.05, && P<0.01 vs DDP group.

2.4. DHA联合DDP促进HNE1/DDP细胞内ROS的产生

通过DCFH-DA荧光探针检测细胞内ROS水平,结果表明DHA或/和DDP可明显提高HNE1/DDP细胞的ROS水平,且DHA联合DDP时细胞内ROS水平增强(P<0.01,图4)。

图4.

图4

DHA联合DDP促进HNE1/DDP细胞内ROS的产生

Fig.4 DHA combined with DDP enhances ROS production in HNE1/DDP cells. **P<0.01 vs Control group; ## P<0.01 vs DHA group; && P<0.01 vs DDP group.

2.5. DHA联合DDP抑制HNE1/DDP细胞增殖作用依赖于ROS的积累

CCK-8结果表明,NAC预处理后,DHA联合DDP组细胞活力的抑制作用被明显逆转(P<0.01,图5)。

图5.

图5

DHA联合DDP抑制HNE1/DDP细胞增殖作用依赖于ROS的积累

Fig.5 DHA combined with DDP more strongly inhibits proliferation of HNE1/DDP cells by promoting ROS accumulation. **P<0.01 vs Control group; ## P<0.01 vs DHA+DDP group.

2.6. ROS参与DHA联合DDP对HNE1/DDP细胞的促凋亡作用

流式细胞术结果显示,与DHA联合DDP组相比,NAC预处理后可显著减少ROS诱导的细胞凋亡;Western blotting结果表明,与DHA联合DDP组相比,NAC预处理后凋亡相关蛋白Cleaved PARP、Cleaved Caspase-9、Cleaved Caspase-3的表达水平下调(P<0.05,图6)。

图6.

图6

抑制ROS生成对HNE1/DDP细胞凋亡和凋亡相关蛋白表达水平的影响

Fig.6 Effects of inhibiting ROS production on apoptosis and expression of apoptosis-related proteins in HNE1/DDP cells following combined treatment with DHA and DDP for 24 h. A: Apoptosis of HNE1/DDP cells treated with NAC (5 mmol/L) followed by combined treatment with DHA and DDP for 24 h was detected by flow cytometry. B: Protein levels of cleaved PARP, cleaved caspase-9, and cleaved caspase-3 in HNE1/DDP cells detected by Western blotting. **P<0.01 vs Control group; # P<0.05 vs DHA+DDP group.

3. 讨论

鼻咽癌是华南和东南亚地区最常见的头颈部肿瘤之一18,目前以DDP为基础的同步放化疗是治疗局部晚期鼻咽癌的标准方法。尽管放疗和化疗的联合疗法取得了令人满意的生存率,然而化疗耐药仍然是鼻咽癌复发患者有效治疗的主要临床障碍。DDP的耐药机制主要涉及DNA损伤修复、细胞凋亡抑制和药物代谢改变等,这些耐药机制对肿瘤患者的治疗及预后有一定影响19-21。DHA作为青蒿素的一种衍生物,被认为是一种具有抗疟、抗炎、抗氧化和免疫调节等多重生物活性的天然药物22,并在近年来被报道为一种有潜力的抗癌药物。多项研究证实,DHA能够通过多种机制发挥抗癌作用,如抑制细胞增殖2324、诱导细胞凋亡2526、抑制肿瘤转移和血管生成27-30以及诱导细胞自噬和内质网应激31等。此外,DHA在增强肿瘤细胞对化疗药物敏感性方面也具有巨大的潜力。研究表明,DHA可通过调控STAT3/DDA1信号通路抑制DDP耐药乳腺癌细胞增殖和诱导凋亡10,也可通过抑制mTOR使DDP对耐DDP卵巢癌细胞敏感32。DHA联合卡培他滨能够通过GSK-3β/TCF7/ MMP9途径抑制结直肠癌的发展,并产生协同作用33。然而,DHA是否能够增强DDP耐药鼻咽癌细胞HNE1/DDP的敏感性,其潜在机制有待阐明。本研究发现,与HNE1细胞相比,HNE1/DDP细胞对单独DDP治疗具有耐药性,DHA联合DDP可以显著抑制HNE1/DDP细胞增殖,促进细胞凋亡,两药联合应用效果优于单独使用DHA或DDP,对细胞生长具有协同抑制作用,表明DHA可以增强HNE1/DDP细胞对DDP的敏感性。

细胞凋亡是细胞程序性死亡的一种形式,是肿瘤进展的关键屏障,诱导细胞凋亡被认为是许多抗肿瘤药物开发的重要机制34。Caspase9是细胞凋亡途径的初始激活蛋白酶,被称为“启动蛋白酶”;Caspase3则是细胞凋亡途径中的“执行蛋白酶”35。当细胞接收到内外信号(如DNA损伤、细胞因子等)诱导细胞凋亡时,Caspase-9活化,从而导致Caspase-3活化,导致细胞死亡3536,因此Caspase-3的激活是细胞凋亡的重要标志。PARP作为Caspase-3的切割底物,在细胞凋亡中起着重要的作用,PARP的剪切也被用作细胞凋亡和Caspase-3激活的指标37。有研究显示,马钱子碱A诱导线粒体功能障碍,导致线粒体膜电位降低,Cyt C释放,Caspase-9和Caspase-3活化,最终诱导细胞凋亡38。蓝萼甲素通过触发细胞内ROS生成、诱导Caspase-9和Caspase-3裂解等途径诱导线粒体凋亡39。本研究发现,与单独处理组相比,DHA联合DDP能够显著上调促凋亡蛋白Cleaved PARP、Cleaved Caspase-3、Cleaved Caspase-9的表达,进一步表明DHA可通过Caspase依赖性线粒体凋亡途径的激活协同诱导DDP对HNE1/DDP细胞的促凋亡作用,从而发挥抗肿瘤作用。

ROS被认为是癌症细胞死亡和增殖过程中的关键调节因子40。有研究表明,DHA能够通过调节舌鳞癌细胞内ROS的生成诱导内质网应激介导的细胞凋亡41,也能通过靶向PTGS1-ROS介导的多种信号通路增强DDP的抗非小细胞肺癌作用16。异戊基螺旋霉素I通过升高ROS水平抑制非小细胞肺癌细胞增殖和诱导细胞凋亡,ROS抑制剂NAC可明显逆转这一作用42。这些发现表明,过度积累的ROS参与肿瘤生长抑制,可通过多种途径引起细胞凋亡,但尚未有文献报道DHA是否能在鼻咽癌中通过促进ROS的产生诱导细胞凋亡,并增强DDP的抗肿瘤作用。因此,本研究选择DCFH-DA作为探针检测细胞内ROS水平,进一步探讨ROS 在DHA联合DDP抑制HNE1/DDP细胞增殖和诱导细胞凋亡中的作用。结果表明,DHA与DDP联合应用能够显著增加HNE1/DDP细胞内ROS的生成。为了确定ROS是否与DHA诱导的细胞凋亡有关,本研究使用NAC进行预处理,发现DHA联合DDP显著抑制了HNE1/DDP细胞的增殖,而NAC预处理部分逆转了这一现象。此外,NAC预处理显著降低了DHA联合DDP促HNE1/DDP细胞凋亡的作用,包括下调Cleaved PARP、Cleaved Caspase-3、Cleaved Caspase-9的表达,提示DHA联合DDP对HNE1/DDP细胞的增殖抑制和凋亡诱导作用是由ROS积累介导的。DHA和DDP联合治疗通过促进ROS的产生诱导HNE1/DDP细胞凋亡,比单一药物治疗更大程度上增强了DDP的抗肿瘤活性。

综上所述,DHA能够增强HNE1/DDP细胞对DDP的敏感性,其抑制细胞增殖和诱导凋亡作用可能与细胞内ROS产生有关。本研究结果提示DHA与DDP联合治疗鼻咽癌可能是一种很有前途的临床治疗方法,将为DDP耐药的鼻咽癌临床治疗提供新的策略。然而,本研究只在细胞水平上进行了实验,因此仍需要进一步在动物水平和信号通路上进行验证和探索。

基金资助

国家自然科学基金(81603155);安徽省高校自然科学研究重点项目(2022AH051534,KJ2021A0736);蚌埠医学院自然科学重点项目(2021byzd018);安徽省大学生创新创业训练项目(S202310367074)

Supported by National Natural Science Foundation of China (81603155).

参考文献

  • 1. Wang SM, Claret FX, Wu WY. MicroRNAs as therapeutic targets in nasopharyngeal carcinoma[J]. Front Oncol, 2019, 9: 756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. [DOI] [PubMed] [Google Scholar]
  • 3. Chen YP, Chan ATC, Le QT, et al. Nasopharyngeal carcinoma[J]. Lancet, 2019, 394(10192): 64-80. [DOI] [PubMed] [Google Scholar]
  • 4. Pfister DG, Spencer S, Adelstein D, et al. Head and neck cancers, version 2.2020, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2020, 18(7): 873-98. [DOI] [PubMed] [Google Scholar]
  • 5. Blanchard P, Lee A, Marguet S, et al. Chemotherapy and radiotherapy in nasopharyngeal carcinoma: an update of the MAC-NPC meta-analysis[J]. Lancet Oncol, 2015, 16(6): 645-55. [DOI] [PubMed] [Google Scholar]
  • 6. Perri F, Bosso D, Buonerba C, et al. Locally advanced nasopharyngeal carcinoma: current and emerging treatment strategies[J]. World J Clin Oncol, 2011, 2(12): 377-83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Perri F, Della Vittoria Scarpati G, Caponigro F, et al. Management of recurrent nasopharyngeal carcinoma: current perspectives[J]. Onco Targets Ther, 2019, 12: 1583-91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Cui ZQ, Pu T, Zhang YJ, et al. Long non-coding RNA LINC00346 contributes to cisplatin resistance in nasopharyngeal carcinoma by repressing miR-342-5p[J]. Open Biol, 2020, 10(5): 190286. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 9. Dutta S, Mahalanobish S, Saha S, et al. Natural products: an upcoming therapeutic approach to cancer[J]. Food Chem Toxicol, 2019, 128: 240-55. [DOI] [PubMed] [Google Scholar]
  • 10. Zhang J, Li Y, Wang JG, et al. Dihydroartemisinin affects STAT3/DDA1 signaling pathway and reverses breast cancer resistance to cisplatin[J]. Am J Chin Med, 2023, 51(2): 445-59. [DOI] [PubMed] [Google Scholar]
  • 11. Malami I, Bunza AM, Alhassan AM, et al. Dihydroartemisinin as a potential drug candidate for cancer therapy: a structural-based virtual screening for multitarget profiling[J]. J Biomol Struct Dyn, 2022, 40(3): 1347-62. [DOI] [PubMed] [Google Scholar]
  • 12. Liu YM, Gao SJ, Zhu J, et al. Dihydroartemisinin induces apoptosis and inhibits proliferation, migration, and invasion in epithelial ovarian cancer via inhibition of the hedgehog signaling pathway[J]. Cancer Med, 2018, 7(11): 5704-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Hu H, Wang ZD, Tan CL, et al. Dihydroartemisinin/miR-29b combination therapy increases the pro-apoptotic effect of dihydroartemisinin on cholangiocarcinoma cell lines by regulating Mcl-1 expression[J]. Adv Clin Exp Med, 2020, 29(8): 911-9. [DOI] [PubMed] [Google Scholar]
  • 14. Lu YY, Chen TS, Wang XP, et al. Single-cell analysis of dihydroartemisinin-induced apoptosis through reactive oxygen species-mediated caspase-8 activation and mitochondrial pathway in ASTC-a-1 cells using fluorescence imaging techniques[J]. J Biomed Opt, 2010, 15(4): 046028. [DOI] [PubMed] [Google Scholar]
  • 15. Li PC, Yang S, Dou MM, et al. Synergic effects of artemisinin and resveratrol in cancer cells[J]. J Cancer Res Clin Oncol, 2014, 140(12): 2065-75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Ni LL, Zhu XP, Zhao Q, et al. Dihydroartemisinin, a potential PTGS1 inhibitor, potentiated cisplatin-induced cell death in non-small cell lung cancer through activating ROS-mediated multiple signaling pathways[J]. Neoplasia, 2024, 51: 100991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. 刘艳艳, 安 倩, 海 波, 等. 双氢青蒿素联合顺铂对人神经母细胞瘤细胞增殖及凋亡的影响[J]. 现代肿瘤医学, 2023, 31(22): 4129-35. 36785388 [Google Scholar]
  • 18. Cao SM, Simons MJ, Qian CN. The prevalence and prevention of nasopharyngeal carcinoma in China[J]. Chin J Cancer, 2011, 30(2): 114-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Hong Y, Che SM, Hui BN, et al. Combination therapy of lung cancer using layer-by-layer cisplatin prodrug and curcumin co-encapsulated nanomedicine[J]. Drug Des Devel Ther, 2020, 14: 2263-74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Yang ML, Li HR, Li YR, et al. Identification of genes and pathways associated with MDR in MCF-7/MDR breast cancer cells by RNA-seq analysis[J]. Mol Med Rep, 2018, 17(5): 6211-26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Kadioglu O, Elbadawi M, Fleischer E, et al. Identification of novel anthracycline resistance genes and their inhibitors[J]. Pharmaceuticals, 2021, 14(10): 1051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Dama S, Niangaly H, Djimde M, et al. A randomized trial of dihydroartemisinin-piperaquine versus artemether-lumefantrine for treatment of uncomplicated Plasmodium falciparum malaria in Mali[J]. Malar J, 2018, 17(1): 347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Slezakova S, Ruda-Kucerova J. Anticancer activity of artemisinin and its derivatives[J]. Anticancer Res, 2017, 37(11): 5995-6003. [DOI] [PubMed] [Google Scholar]
  • 24. Zhang CZ, Zhang HT, Yun JP, et al. Dihydroartemisinin exhibits antitumor activity toward hepatocellular carcinoma in vitro and in vivo [J]. Biochem Pharmacol, 2012, 83(9): 1278-89. [DOI] [PubMed] [Google Scholar]
  • 25. Qin GQ, Zhao CB, Zhang LL, et al. Dihydroartemisinin induces apoptosis preferentially via a Bim-mediated intrinsic pathway in hepatocarcinoma cells[J]. Apoptosis, 2015, 20(8): 1072-86. [DOI] [PubMed] [Google Scholar]
  • 26. Im E, Yeo C, Lee HJ, et al. Dihydroartemisinin induced caspase-dependent apoptosis through inhibiting the specificity protein 1 pathway in hepatocellular carcinoma SK-Hep-1 cells[J]. Life Sci, 2018, 192: 286-92. [DOI] [PubMed] [Google Scholar]
  • 27. Dong J, Yang WH, Han JQ, et al. Effect of dihydroartemisinin on epithelial-to-mesenchymal transition in canine mammary tumour cells[J]. Res Vet Sci, 2019, 124: 240-7. [DOI] [PubMed] [Google Scholar]
  • 28. Li N, Zhang SY, Luo Q, et al. The effect of dihydroartemisinin on the malignancy and epithelial-mesenchymal transition of gastric cancer cells[J]. Curr Pharm Biotechnol, 2019, 20(9): 719-26. [DOI] [PubMed] [Google Scholar]
  • 29. Yao YY, Guo QL, Cao Y, et al. Artemisinin derivatives inactivate cancer-associated fibroblasts through suppressing TGF‑β signaling in breast cancer[J]. J Exp Clin Cancer Res, 2018, 37(1): 282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Chen HH, Zhou HJ, Fang X. Inhibition of human cancer cell line growth and human umbilical vein endothelial cell angiogenesis by artemisinin derivatives in vitro [J]. Pharmacol Res, 2003, 48(3): 231-6. [DOI] [PubMed] [Google Scholar]
  • 31. Lu JJ, Chen SM, Zhang XW, et al. The anti-cancer activity of dihydroartemisinin is associated with induction of iron-dependent endoplasmic reticulum stress in colorectal carcinoma HCT116 cells[J]. Invest New Drugs, 2011, 29(6): 1276-83. [DOI] [PubMed] [Google Scholar]
  • 32. Feng X, Li L, Jiang H, et al. Dihydroartemisinin potentiates the anticancer effect of cisplatin via mTOR inhibition in cisplatin-resistant ovarian cancer cells: involvement of apoptosis and autophagy[J]. Biochem Biophys Res Commun, 2014, 444(3): 376-81. [DOI] [PubMed] [Google Scholar]
  • 33. Dai XS, Chen W, Qiao Y, et al. Dihydroartemisinin inhibits the development of colorectal cancer by GSK-3β/TCF7/MMP9 pathway and synergies with capecitabine[J]. Cancer Lett, 2024, 582: 216596. [DOI] [PubMed] [Google Scholar]
  • 34. Li XM, Hou YN, Zhao JT, et al. Combination of chemotherapy and oxidative stress to enhance cancer cell apoptosis[J]. Chem Sci, 2020, 11(12): 3215-22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Tian YZ, Liu YP, Tian SC, et al. Antitumor activity of ginsenoside Rd in gastric cancer via up-regulation of Caspase-3 and Caspase-9[J]. Pharmazie, 2020, 75(4): 147-50. [DOI] [PubMed] [Google Scholar]
  • 36. NavaneethaKrishnan S, Rosales JL, Lee KY. Loss of Cdk5 in breast cancer cells promotes ROS-mediated cell death through dysregulation of the mitochondrial permeability transition pore[J]. Oncogene, 2018, 37(13): 1788-804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Olliaro PL, Haynes RK, Meunier B, et al. Possible modes of action of the artemisinin-type compounds[J]. Trends Parasitol, 2001, 17(3): 122-6. [DOI] [PubMed] [Google Scholar]
  • 38. Li X, Liu CQ, Zhang X, et al. Bruceine A: Suppressing metastasis via MEK/ERK pathway and invoking mitochondrial apoptosis in triple-negative breast cancer[J]. Biomedecine Pharmacother, 2023, 168: 115784. [DOI] [PubMed] [Google Scholar]
  • 39. Zhu JW, Sun Y, Lu Y, et al. Glaucocalyxin A exerts anticancer effect on osteosarcoma by inhibiting GLI1 nuclear translocation via regulating PI3K/Akt pathway[J]. Cell Death Dis, 2018, 9(6): 708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Perillo B, di Donato M, Pezone A, et al. ROS in cancer therapy: the bright side of the moon[J]. Exp Mol Med, 2020, 52(2): 192-203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. Zhou Q, Ye FF, Qiu JX, et al. Dihydroartemisinin induces ER stress-mediated apoptosis in human tongue squamous carcinoma by regulating ROS production[J]. Anticancer Agents Med Chem, 2022, 22(16): 2902-8. [DOI] [PubMed] [Google Scholar]
  • 42. Liu ZY, Huang ML, Hong Y, et al. Isovalerylspiramycin I suppresses non-small cell lung carcinoma growth through ROS-mediated inhibition of PI3K/AKT signaling pathway[J]. Int J Biol Sci, 2022, 18(9): 3714-30. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES