Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Jan 15;297(Pt 2):277–280. doi: 10.1042/bj2970277

Microsomal lipoamide reductase provides vitamin K epoxide reductase with reducing equivalents.

H H Thijssen 1, Y P Janssen 1, L T Vervoort 1
PMCID: PMC1137825  PMID: 8297331

Abstract

This study was undertaken to search for the endogenous dithiol cofactor of the reductases of the vitamin K cycle. As a starting point, the redox-active lipophilic endogenous compounds lipoic acid and lipoamide were looked at. The study shows that microsomes contain NADH-dependent lipoamide reductase activity. Reduced lipoamide stimulates microsomal vitamin K epoxide reduction with kinetics comparable with those for the synthetic dithiol dithiothreitol (DTT). Reduced lipoic acid shows higher (4-fold) Km values. No reductase activity with lipoic acid was found to be present in microsomes or cytosol. The reduced-lipoamide-stimulated vitamin K epoxide reductase is as sensitive to warfarin and salicylate inhibition as is the DTT-stimulated one. Both vitamin K epoxide reductase and lipoamide reductase activity are recovered in the rough microsomes. NADH/lipoamide-stimulated vitamin K epoxide reduction is uncoupled by traces of Triton X-100, suggesting that microsomal lipoamide reductase and vitamin K epoxide reductase are associated. The results suggest that the vitamin K cycle obtains reducing equivalents from NADH through microsomal lipoamide reductase.

Full text

PDF
277

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashford A. J., Pain V. M. Effect of diabetes on the rates of synthesis and degradation of ribosomes in rat muscle and liver in vivo. J Biol Chem. 1986 Mar 25;261(9):4059–4065. [PubMed] [Google Scholar]
  2. Fasco M. J., Preusch P. C., Hildebrandt E., Suttie J. W. Formation of hydroxyvitamin K by vitamin K epoxide reductase of warfarin-resistant rats. J Biol Chem. 1983 Apr 10;258(7):4372–4380. [PubMed] [Google Scholar]
  3. Fasco M. J., Principe L. M., Walsh W. A., Friedman P. A. Warfarin inhibition of vitamin K 2,3-epoxide reductase in rat liver microsomes. Biochemistry. 1983 Nov 22;22(24):5655–5660. doi: 10.1021/bi00293a031. [DOI] [PubMed] [Google Scholar]
  4. Freedman R. B., Hawkins H. C., Murant S. J., Reid L. Protein disulphide-isomerase: a homologue of thioredoxin implicated in the biosynthesis of secretory proteins. Biochem Soc Trans. 1988 Apr;16(2):96–99. doi: 10.1042/bst0160096. [DOI] [PubMed] [Google Scholar]
  5. Hildebrandt E., Suttie J. W. Indirect inhibition of vitamin K epoxide reduction by salicylate. J Pharm Pharmacol. 1984 Sep;36(9):586–591. doi: 10.1111/j.2042-7158.1984.tb04903.x. [DOI] [PubMed] [Google Scholar]
  6. Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem. 1989 Aug 25;264(24):13963–13966. [PubMed] [Google Scholar]
  7. Johan L., van Haarlem M., Soute B. A., Vermeer C. Vitamin K-dependent carboxylase. Possible role for thioredoxin in the reduction of vitamin K metabolites in liver. FEBS Lett. 1987 Oct 5;222(2):353–357. doi: 10.1016/0014-5793(87)80401-5. [DOI] [PubMed] [Google Scholar]
  8. Lambert N., Freedman R. B. The latency of rat liver microsomal protein disulphide-isomerase. Biochem J. 1985 Jun 15;228(3):635–645. doi: 10.1042/bj2280635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lee J. J., Fasco M. J. Metabolism of vitamin K and vitamin K 2,3-epoxide via interaction with a common disulfide. Biochemistry. 1984 May 8;23(10):2246–2252. doi: 10.1021/bi00305a024. [DOI] [PubMed] [Google Scholar]
  10. Lundström J., Holmgren A. Protein disulfide-isomerase is a substrate for thioredoxin reductase and has thioredoxin-like activity. J Biol Chem. 1990 Jun 5;265(16):9114–9120. [PubMed] [Google Scholar]
  11. Matuda S., Saheki T. Intracellular distribution and biosynthesis of lipoamide dehydrogenase in rat liver. J Biochem. 1982 Feb;91(2):553–561. doi: 10.1093/oxfordjournals.jbchem.a133727. [DOI] [PubMed] [Google Scholar]
  12. Noiva R., Lennarz W. J. Protein disulfide isomerase. A multifunctional protein resident in the lumen of the endoplasmic reticulum. J Biol Chem. 1992 Feb 25;267(6):3553–3556. [PubMed] [Google Scholar]
  13. Preusch P. C. Is thioredoxin the physiological vitamin K epoxide reducing agent? FEBS Lett. 1992 Jul 6;305(3):257–259. doi: 10.1016/0014-5793(92)80681-6. [DOI] [PubMed] [Google Scholar]
  14. Soute B. A., Groenen-van Dooren M. M., Holmgren A., Lundström J., Vermeer C. Stimulation of the dithiol-dependent reductases in the vitamin K cycle by the thioredoxin system. Strong synergistic effects with protein disulphide-isomerase. Biochem J. 1992 Jan 1;281(Pt 1):255–259. doi: 10.1042/bj2810255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Suttie J. W. Recent advances in hepatic vitamin K metabolism and function. Hepatology. 1987 Mar-Apr;7(2):367–376. doi: 10.1002/hep.1840070226. [DOI] [PubMed] [Google Scholar]
  16. Thijssen H. H., Baars L. G. Tissue distribution of selective warfarin binding sites in the rat. Biochem Pharmacol. 1991 Nov 6;42(11):2181–2186. doi: 10.1016/0006-2952(91)90354-8. [DOI] [PubMed] [Google Scholar]
  17. Thijssen H. H., Baars L. G., Vervoort-Peters H. T. Vitamin K 2,3-epoxide reductase: the basis for stereoselectivity of 4-hydroxycoumarin anticoagulant activity. Br J Pharmacol. 1988 Nov;95(3):675–682. doi: 10.1111/j.1476-5381.1988.tb11692.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Thijssen H. H., Drittij-Reijnders M. J. Vitamin K metabolism and vitamin K1 status in human liver samples: a search for inter-individual differences in warfarin sensitivity. Br J Haematol. 1993 Aug;84(4):681–685. doi: 10.1111/j.1365-2141.1993.tb03146.x. [DOI] [PubMed] [Google Scholar]
  19. Thijssen H. H. Warfarin resistance. Vitamin K epoxide reductase of Scottish resistance genes is not irreversibly blocked by warfarin. Biochem Pharmacol. 1987 Sep 1;36(17):2753–2757. doi: 10.1016/0006-2952(87)90260-7. [DOI] [PubMed] [Google Scholar]
  20. Tsai C. S. Kinetic studies of multifunctional reactions catalysed by lipoamide dehydrogenase. Int J Biochem. 1980;11(5):407–413. doi: 10.1016/0020-711x(80)90311-0. [DOI] [PubMed] [Google Scholar]
  21. Vermeer C. Gamma-carboxyglutamate-containing proteins and the vitamin K-dependent carboxylase. Biochem J. 1990 Mar 15;266(3):625–636. doi: 10.1042/bj2660625. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES