Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Mar 15;298(Pt 3):575–578. doi: 10.1042/bj2980575

Localization of sequences for the basal and insulin-like growth factor-I inducible activity of the fatty acid synthase promoter in 3T3-L1 fibroblasts.

S Misra 1, K Sakamoto 1, N Moustaïd 1, H S Sul 1
PMCID: PMC1137897  PMID: 7511375

Abstract

Fatty acid synthase (FAS) plays a central role in fatty acid synthesis and its expression is under nutritional and hormonal control. We have investigated insulin-like growth factor-I (IGF-I) regulation of FAS by transfecting into 3T3-L1 fibroblasts chimeric genes comprising the 5'-flanking region of the FAS gene linked to a luciferase (LUC) reporter gene. First, the basal promoter activity of the 5' serial deletions from nucleotides -318 to -19 of the FAS gene were compared. Deletions of the promoter sequences from -136 to -19 resulted in a step-wise decrease in the promoter activity, with the -67 LUC and -19 LUC plasmids retaining 40% and 16% of the luciferase activity of -136 LUC. Regulatory sequences important for the FAS basal promoter activity in 3T3-L1 fibroblasts are, therefore, located within the -136 to -19 region. Treatment with 10 mM IGF-I also increased luciferase activity 1.8 +/- 0.2-, 1.8 +/- 0.3- and 2.5 +/- 0.1-fold in 3T3-L1 fibroblasts transiently transfected with -136 LUC, -110 LUC and -67 LUC plasmids, respectively. Deletion of sequences from -67 to -19 resulted in the loss of responsiveness to IGF-I. Physiological doses of insulin (10 nM), however, did not increase luciferase activity in 3T3-L1 fibroblasts transfected with any of the above plasmids. Only upon treatment with pharmacological doses of insulin (1 microM), probably through IGF-I receptor, did luciferase activity increase 4.3 +/- 0.4-, 3.2 +/- 0.4- and 3.5 +/- 0.5-fold when transfected with -136 LUC, -110 LUC and -67 LUC plasmids, respectively; there was no increase with -19 LUC. The half-maximal effect of IGF-I on FAS promoter activity was observed at 3 nM and a maximal effect was reached at 10 nM. These results indicate that the increased promoter activities observed are probably mediated through the IGF-I receptor. Furthermore, sequences responsible for IGF-I regulation of the FAS gene are located within the proximal promoter between nucleotides -67 and -19 of the FAS gene.

Full text

PDF
575

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alemany J., Borras T., de Pablo F. Transcriptional stimulation of the delta 1-crystallin gene by insulin-like growth factor I and insulin requires DNA cis elements in chicken. Proc Natl Acad Sci U S A. 1990 May;87(9):3353–3357. doi: 10.1073/pnas.87.9.3353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Araki E., Murakami T., Shirotani T., Kanai F., Shinohara Y., Shimada F., Mori M., Shichiri M., Ebina Y. A cluster of four Sp1 binding sites required for efficient expression of the human insulin receptor gene. J Biol Chem. 1991 Feb 25;266(6):3944–3948. [PubMed] [Google Scholar]
  3. Back D. W., Goldman M. J., Fisch J. E., Ochs R. S., Goodridge A. G. The fatty acid synthase gene in avian liver. Two mRNAs are expressed and regulated in parallel by feeding, primarily at the level of transcription. J Biol Chem. 1986 Mar 25;261(9):4190–4197. [PubMed] [Google Scholar]
  4. Benito M., Porras A., Nebreda A. R., Santos E. Differentiation of 3T3-L1 fibroblasts to adipocytes induced by transfection of ras oncogenes. Science. 1991 Aug 2;253(5019):565–568. doi: 10.1126/science.1857988. [DOI] [PubMed] [Google Scholar]
  5. Blake W. L., Clarke S. D. Induction of adipose fatty acid binding protein (a-FABP) by insulin-like growth factor-1 (IGF-1) in 3T3-L1 preadipocytes. Biochem Biophys Res Commun. 1990 Nov 30;173(1):87–91. doi: 10.1016/s0006-291x(05)81025-3. [DOI] [PubMed] [Google Scholar]
  6. Brasier A. R., Tate J. E., Habener J. F. Optimized use of the firefly luciferase assay as a reporter gene in mammalian cell lines. Biotechniques. 1989 Nov-Dec;7(10):1116–1122. [PubMed] [Google Scholar]
  7. Chuang L. M., Myers M. G., Jr, Seidner G. A., Birnbaum M. J., White M. F., Kahn C. R. Insulin receptor substrate 1 mediates insulin and insulin-like growth factor I-stimulated maturation of Xenopus oocytes. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5172–5175. doi: 10.1073/pnas.90.11.5172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Emler C. A., Schalch D. S. Nutritionally-induced changes in hepatic insulin-like growth factor I (IGF-I) gene expression in rats. Endocrinology. 1987 Feb;120(2):832–834. doi: 10.1210/endo-120-2-832. [DOI] [PubMed] [Google Scholar]
  9. Foufelle F., Gouhot B., Pégorier J. P., Perdereau D., Girard J., Ferré P. Glucose stimulation of lipogenic enzyme gene expression in cultured white adipose tissue. A role for glucose 6-phosphate. J Biol Chem. 1992 Oct 15;267(29):20543–20546. [PubMed] [Google Scholar]
  10. Kozma L., Baltensperger K., Klarlund J., Porras A., Santos E., Czech M. P. The ras signaling pathway mimics insulin action on glucose transporter translocation. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4460–4464. doi: 10.1073/pnas.90.10.4460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lakshmanan M. R., Nepokroeff C. M., Porter J. W. Control of the synthesis of fatty-acid synthetase in rat liver by insulin, glucagon, and adenosine 3':5' cyclic monophosphate. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3516–3519. doi: 10.1073/pnas.69.12.3516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Moustaïd N., Sakamoto K., Clarke S., Beyer R. S., Sul H. S. Regulation of fatty acid synthase gene transcription. Sequences that confer a positive insulin effect and differentiation-dependent expression in 3T3-L1 preadipocytes are present in the 332 bp promoter. Biochem J. 1993 Jun 15;292(Pt 3):767–772. doi: 10.1042/bj2920767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Paulauskis J. D., Sul H. S. Cloning and expression of mouse fatty acid synthase and other specific mRNAs. Developmental and hormonal regulation in 3T3-L1 cells. J Biol Chem. 1988 May 25;263(15):7049–7054. [PubMed] [Google Scholar]
  14. Paulauskis J. D., Sul H. S. Hormonal regulation of mouse fatty acid synthase gene transcription in liver. J Biol Chem. 1989 Jan 5;264(1):574–577. [PubMed] [Google Scholar]
  15. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schmidt W., Pöll-Jordan G., Löffler G. Adipose conversion of 3T3-L1 cells in a serum-free culture system depends on epidermal growth factor, insulin-like growth factor I, corticosterone, and cyclic AMP. J Biol Chem. 1990 Sep 15;265(26):15489–15495. [PubMed] [Google Scholar]
  17. Sedmak J. J., Grossberg S. E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]
  18. Shimizu M., Torti F., Roth R. A. Characterization of the insulin and insulin-like growth factor receptors and responsitivity of a fibroblast/adipocyte cell line before and after differentiation. Biochem Biophys Res Commun. 1986 May 29;137(1):552–558. doi: 10.1016/0006-291x(86)91246-5. [DOI] [PubMed] [Google Scholar]
  19. Smith P. J., Wise L. S., Berkowitz R., Wan C., Rubin C. S. Insulin-like growth factor-I is an essential regulator of the differentiation of 3T3-L1 adipocytes. J Biol Chem. 1988 Jul 5;263(19):9402–9408. [PubMed] [Google Scholar]
  20. Stapleton S. R., Mitchell D. A., Salati L. M., Goodridge A. G. Triiodothyronine stimulates transcription of the fatty acid synthase gene in chick embryo hepatocytes in culture. Insulin and insulin-like growth factor amplify that effect. J Biol Chem. 1990 Oct 25;265(30):18442–18446. [PubMed] [Google Scholar]
  21. Straus D. S., Takemoto C. D. Effect of dietary protein deprivation on insulin-like growth factor (IGF)-I and -II, IGF binding protein-2, and serum albumin gene expression in rat. Endocrinology. 1990 Oct;127(4):1849–1860. doi: 10.1210/endo-127-4-1849. [DOI] [PubMed] [Google Scholar]
  22. Zapf J., Froesch E. R., Humbel R. E. The insulin-like growth factors (IGF) of human serum: chemical and biological characterization and aspects of their possible physiological role. Curr Top Cell Regul. 1981;19:257–309. doi: 10.1016/b978-0-12-152819-5.50024-5. [DOI] [PubMed] [Google Scholar]
  23. de Vroede M. A., Romanus J. A., Standaert M. L., Pollet R. J., Nissley S. P., Rechler M. M. Interaction of insulin-like growth factors with a nonfusing mouse muscle cell line: binding, action, and receptor down-regulation. Endocrinology. 1984 May;114(5):1917–1929. doi: 10.1210/endo-114-5-1917. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES