Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Mar 1;298(Pt 2):403–407. doi: 10.1042/bj2980403

The gelatin-binding site of human 72 kDa type IV collagenase (gelatinase A).

L Bányai 1, H Tordai 1, L Patthy 1
PMCID: PMC1137954  PMID: 8135748

Abstract

To identify structures critical for gelatin-binding of 72 kDa type IV collagenase (gelatinase A), fragments of this metalloproteinase have been expressed in Escherichia coli and assayed for their gelatin affinity. Each of the three fibronectin-related type II domains was found to have affinity for gelatin. Fragments containing all three tandem type II domains had significantly stronger affinity than any of the constituent units, indicating that they co-operate to form the high-affinity gelatin-binding site. Competition experiments have also shown that gelatinase A binds more tightly to gelatin than fibronectin and can displace the latter from denatured collagen.

Full text

PDF
403

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bányai L., Patthy L. Evidence for the involvement of type II domains in collagen binding by 72 kDa type IV procollagenase. FEBS Lett. 1991 Apr 22;282(1):23–25. doi: 10.1016/0014-5793(91)80436-7. [DOI] [PubMed] [Google Scholar]
  2. Bányai L., Patthy L. Importance of intramolecular interactions in the control of the fibrin affinity and activation of human plasminogen. J Biol Chem. 1984 May 25;259(10):6466–6471. [PubMed] [Google Scholar]
  3. Bányai L., Trexler M., Koncz S., Gyenes M., Sipos G., Patthy L. The collagen-binding site of type-II units of bovine seminal fluid protein PDC-109 and fibronectin. Eur J Biochem. 1990 Nov 13;193(3):801–806. doi: 10.1111/j.1432-1033.1990.tb19403.x. [DOI] [PubMed] [Google Scholar]
  4. Collier I. E., Krasnov P. A., Strongin A. Y., Birkedal-Hansen H., Goldberg G. I. Alanine scanning mutagenesis and functional analysis of the fibronectin-like collagen-binding domain from human 92-kDa type IV collagenase. J Biol Chem. 1992 Apr 5;267(10):6776–6781. [PubMed] [Google Scholar]
  5. Collier I. E., Wilhelm S. M., Eisen A. Z., Marmer B. L., Grant G. A., Seltzer J. L., Kronberger A., He C. S., Bauer E. A., Goldberg G. I. H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J Biol Chem. 1988 May 15;263(14):6579–6587. [PubMed] [Google Scholar]
  6. Constantine K. L., Madrid M., Bányai L., Trexler M., Patthy L., Llinás M. Refined solution structure and ligand-binding properties of PDC-109 domain b. A collagen-binding type II domain. J Mol Biol. 1992 Jan 5;223(1):281–298. doi: 10.1016/0022-2836(92)90731-x. [DOI] [PubMed] [Google Scholar]
  7. Constantine K. L., Ramesh V., Bányai L., Trexler M., Patthy L., Llinás M. Sequence-specific 1H NMR assignments and structural characterization of bovine seminal fluid protein PDC-109 domain b. Biochemistry. 1991 Feb 12;30(6):1663–1672. doi: 10.1021/bi00220a032. [DOI] [PubMed] [Google Scholar]
  8. Danø K., Andreasen P. A., Grøndahl-Hansen J., Kristensen P., Nielsen L. S., Skriver L. Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res. 1985;44:139–266. doi: 10.1016/s0065-230x(08)60028-7. [DOI] [PubMed] [Google Scholar]
  9. Fridman R., Fuerst T. R., Bird R. E., Hoyhtya M., Oelkuct M., Kraus S., Komarek D., Liotta L. A., Berman M. L., Stetler-Stevenson W. G. Domain structure of human 72-kDa gelatinase/type IV collagenase. Characterization of proteolytic activity and identification of the tissue inhibitor of metalloproteinase-2 (TIMP-2) binding regions. J Biol Chem. 1992 Aug 5;267(22):15398–15405. [PubMed] [Google Scholar]
  10. Guidry C., Miller E. J., Hook M. A second fibronectin-binding region is present in collagen alpha chains. J Biol Chem. 1990 Nov 5;265(31):19230–19236. [PubMed] [Google Scholar]
  11. HE C. S., Wilhelm S. M., Pentland A. P., Marmer B. L., Grant G. A., Eisen A. Z., Goldberg G. I. Tissue cooperation in a proteolytic cascade activating human interstitial collagenase. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2632–2636. doi: 10.1073/pnas.86.8.2632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Howard E. W., Banda M. J. Binding of tissue inhibitor of metalloproteinases 2 to two distinct sites on human 72-kDa gelatinase. Identification of a stabilization site. J Biol Chem. 1991 Sep 25;266(27):17972–17977. [PubMed] [Google Scholar]
  13. Johansson S., Smedsrød B. Identification of a plasma gelatinase in preparations of fibronectin. J Biol Chem. 1986 Apr 5;261(10):4363–4366. [PubMed] [Google Scholar]
  14. Kleinman H. K., Klebe R. J., Martin G. R. Role of collagenous matrices in the adhesion and growth of cells. J Cell Biol. 1981 Mar;88(3):473–485. doi: 10.1083/jcb.88.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kleinman H. K., McGoodwin E. B., Martin G. R., Klebe R. J., Fietzek P. P., Woolley D. E. Localization of the binding site for cell attachment in the alpha1(I) chain of collagen. J Biol Chem. 1978 Aug 25;253(16):5642–5646. [PubMed] [Google Scholar]
  16. Kubota S., Mitsudomi T., Yamada Y. Invasive human fibrosarcoma DNA mediated induction of a 92 kDa gelatinase/type IV collagenase leads to an invasive phenotype. Biochem Biophys Res Commun. 1991 Dec 31;181(3):1539–1547. doi: 10.1016/0006-291x(91)92114-y. [DOI] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Librach C. L., Werb Z., Fitzgerald M. L., Chiu K., Corwin N. M., Esteves R. A., Grobelny D., Galardy R., Damsky C. H., Fisher S. J. 92-kD type IV collagenase mediates invasion of human cytotrophoblasts. J Cell Biol. 1991 Apr;113(2):437–449. doi: 10.1083/jcb.113.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Liotta L. A., Steeg P. S., Stetler-Stevenson W. G. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991 Jan 25;64(2):327–336. doi: 10.1016/0092-8674(91)90642-c. [DOI] [PubMed] [Google Scholar]
  20. Lukacsovich T., Boros I., Venetianer P. New regulatory features of the promoters of an Escherichia coli rRNA gene. J Bacteriol. 1987 Jan;169(1):272–277. doi: 10.1128/jb.169.1.272-277.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mach H., Middaugh C. R., Lewis R. V. Statistical determination of the average values of the extinction coefficients of tryptophan and tyrosine in native proteins. Anal Biochem. 1992 Jan;200(1):74–80. doi: 10.1016/0003-2697(92)90279-g. [DOI] [PubMed] [Google Scholar]
  22. Mackay A. R., Hartzler J. L., Pelina M. D., Thorgeirsson U. P. Studies on the ability of 65-kDa and 92-kDa tumor cell gelatinases to degrade type IV collagen. J Biol Chem. 1990 Dec 15;265(35):21929–21934. [PubMed] [Google Scholar]
  23. Matrisian L. M. Metalloproteinases and their inhibitors in matrix remodeling. Trends Genet. 1990 Apr;6(4):121–125. doi: 10.1016/0168-9525(90)90126-q. [DOI] [PubMed] [Google Scholar]
  24. Matrisian L. M. The matrix-degrading metalloproteinases. Bioessays. 1992 Jul;14(7):455–463. doi: 10.1002/bies.950140705. [DOI] [PubMed] [Google Scholar]
  25. Murphy G., Cockett M. I., Ward R. V., Docherty A. J. Matrix metalloproteinase degradation of elastin, type IV collagen and proteoglycan. A quantitative comparison of the activities of 95 kDa and 72 kDa gelatinases, stromelysins-1 and -2 and punctuated metalloproteinase (PUMP). Biochem J. 1991 Jul 1;277(Pt 1):277–279. doi: 10.1042/bj2770277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Murphy G., Willenbrock F., Ward R. V., Cockett M. I., Eaton D., Docherty A. J. The C-terminal domain of 72 kDa gelatinase A is not required for catalysis, but is essential for membrane activation and modulates interactions with tissue inhibitors of metalloproteinases. Biochem J. 1992 May 1;283(Pt 3):637–641. doi: 10.1042/bj2830637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Senior R. M., Griffin G. L., Fliszar C. J., Shapiro S. D., Goldberg G. I., Welgus H. G. Human 92- and 72-kilodalton type IV collagenases are elastases. J Biol Chem. 1991 Apr 25;266(12):7870–7875. [PubMed] [Google Scholar]
  28. Skorstengaard K., Thøgersen H. C., Petersen T. E. Complete primary structure of the collagen-binding domain of bovine fibronectin. Eur J Biochem. 1984 Apr 16;140(2):235–243. doi: 10.1111/j.1432-1033.1984.tb08092.x. [DOI] [PubMed] [Google Scholar]
  29. Stanssens P., Opsomer C., McKeown Y. M., Kramer W., Zabeau M., Fritz H. J. Efficient oligonucleotide-directed construction of mutations in expression vectors by the gapped duplex DNA method using alternating selectable markers. Nucleic Acids Res. 1989 Jun 26;17(12):4441–4454. doi: 10.1093/nar/17.12.4441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tanaka H., Hojo K., Yoshida H., Yoshioka T., Sugita K. Molecular cloning and expression of the mouse 105-kDa gelatinase cDNA. Biochem Biophys Res Commun. 1993 Feb 15;190(3):732–740. doi: 10.1006/bbrc.1993.1110. [DOI] [PubMed] [Google Scholar]
  31. Váradi A., Patthy L. Location of plasminogen-binding sites in human fibrin(ogen). Biochemistry. 1983 May 10;22(10):2440–2446. doi: 10.1021/bi00279a021. [DOI] [PubMed] [Google Scholar]
  32. Wilhelm S. M., Collier I. E., Marmer B. L., Eisen A. Z., Grant G. A., Goldberg G. I. SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J Biol Chem. 1989 Oct 15;264(29):17213–17221. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES