Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Feb 15;298(Pt 1):51–60. doi: 10.1042/bj2980051

Identity of the core proteins of the large chondroitin sulphate proteoglycans synthesized by skeletal muscle and prechondrogenic mesenchyme.

D A Carrino 1, J E Dennis 1, R F Drushel 1, S E Haynesworth 1, A I Caplan 1
PMCID: PMC1137982  PMID: 8129731

Abstract

Large, chondroitin sulphate-containing proteoglycans are synthesized by three prominent tissue in the embryonic chick limb. One of these proteoglycans is aggrecan, the phenotype-specific proteoglycan of cartilage. Another, PG-M, is produced by prechondrogenic mesenchymal cells. The third, M-CSPG, is made by developing skeletal muscle cells. While the carbohydrate components of PG-M and M-CSPG share some similarities, both of these proteoglycans clearly have different carbohydrate moieties from those of aggrecan. To compare these three proteoglycans at another level, their core protein structures were analysed in three ways: by the presence or absence of monoclonal antibody epitopes, by one-dimensional peptide display of the cyanogen bromide-cleaved core proteins and by electron microscopic imaging of the molecules. Monoclonal antibodies whose epitopes are present in aggrecan core protein were tested with core protein preparations from M-CSPG and PG-M. One of these, 7D1, recognizes both PG-M and M-CSPG, while another, 1C6, shows no reactivity for the non-cartilage proteoglycans. The absence of 1C6 reactivity is of interest, as its epitope is in a region of the aggrecan core protein known to have a functional homologue in the core proteins of PG-M and M-CSPG. The cyanogen bromide-fragmented peptide pattern of M-CSPG is the same as that of PG-M, and both are different from that of aggrecan. The aggrecan pattern has one prominent large band (molecular mass 130 kDa), some less prominent large bands (molecular mass 70-100 kDa) and several smaller bands. In contrast, the PG-M and M-CSPG patterns show no bands with molecular masses > 73 kDa, and the smaller bands (molecular mass < 40 kDa) have a different pattern to that of the smaller bands from aggrecan. The electron microscopic images of aggrecan show a core protein with one end having two globular regions separated by a short linear segment; adjacent to this is a long linear segment, which sometimes contains a third globular region at the end of the core protein opposite the end with the double-globe structure. M-CSPG and PG-M core proteins never show images with the double-globe structure. Instead, one end of the molecule has a single globular domain, and a second globular region is variably present at the opposite end of the core protein. Thus, by all three methods, the core proteins of PG-M and M-CSPG appear to be the same and both differ from the core protein of aggrecan.

Full text

PDF
51

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  2. Bonnet F., Le Glédic S., Périn J. P., Jollès J., Jollès P. Identification of cyanogen bromide-fragments of the protein core of bovine nasal cartilage proteoglycan monomer. Biochim Biophys Acta. 1983 Feb 28;743(1):82–90. doi: 10.1016/0167-4838(83)90420-x. [DOI] [PubMed] [Google Scholar]
  3. Caplan A. I. A simplified procedure for preparing myogenic cells for culture. J Embryol Exp Morphol. 1976 Aug;36(1):175–181. [PubMed] [Google Scholar]
  4. Caplan A. I. Effects of the nicotinamide-sensitive teratogen3-acetylpyridine on chick limb cells in culture. Exp Cell Res. 1970 Oct;62(2):341–355. doi: 10.1016/0014-4827(70)90564-1. [DOI] [PubMed] [Google Scholar]
  5. Carrino D. A., Caplan A. I. Isolation and characterization of proteoglycans synthesized in ovo by embryonic chick cartilage and new bone. J Biol Chem. 1985 Jan 10;260(1):122–127. [PubMed] [Google Scholar]
  6. Carrino D. A., Caplan A. I. Isolation and partial characterization of high-buoyant-density proteoglycans synthesized in ovo by embryonic chick skeletal muscle and heart. J Biol Chem. 1984 Oct 25;259(20):12419–12430. [PubMed] [Google Scholar]
  7. Carrino D. A., Caplan A. I. Isolation and preliminary characterization of proteoglycans synthesized by skeletal muscle. J Biol Chem. 1982 Dec 10;257(23):14145–14154. [PubMed] [Google Scholar]
  8. Carrino D. A., Caplan A. I. Structural characterization of chick embryonic skeletal muscle chondroitin sulfate proteoglycan. Connect Tissue Res. 1989;19(1):35–50. doi: 10.3109/03008208909016813. [DOI] [PubMed] [Google Scholar]
  9. Carrino D. A., Oron U., Pechak D. G., Caplan A. I. Reinitiation of chondroitin sulphate proteoglycan synthesis in regenerating skeletal muscle. Development. 1988 Aug;103(4):641–656. doi: 10.1242/dev.103.4.641. [DOI] [PubMed] [Google Scholar]
  10. Chang Y., Yanagishita M., Hascall V. C., Wight T. N. Proteoglycans synthesized by smooth muscle cells derived from monkey (Macaca nemestrina) aorta. J Biol Chem. 1983 May 10;258(9):5679–5688. [PubMed] [Google Scholar]
  11. Cöster L., Carlstedt I., Malmström A., Särnstrand B. Biosynthesis and secretion of dermatan sulphate proteoglycans in cultures of human skin fibroblasts. Biochem J. 1984 Jun 1;220(2):575–582. doi: 10.1042/bj2200575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cöster L., Fransson L. A. Isolation and characterization of dermatan sulphate proteoglycans from bovine sclera. Biochem J. 1981 Jan 1;193(1):143–153. doi: 10.1042/bj1930143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. De Luca S., Heinegård D., Hascall V. C., Kimura J. H., Caplan A. I. Chemical and physical changes in proteoglycans during development of chick limb bud chondrocytes grown in vitro. J Biol Chem. 1977 Oct 10;252(19):6600–6608. [PubMed] [Google Scholar]
  14. Dennis J. E., Carrino D. A., Schwartz N. B., Caplan A. I. Ultrastructural characterization of embryonic chick cartilage proteoglycan core protein and the mapping of a monoclonal antibody epitope. J Biol Chem. 1990 Jul 15;265(20):12098–12103. [PubMed] [Google Scholar]
  15. Doege K., Sasaki M., Horigan E., Hassell J. R., Yamada Y. Complete primary structure of the rat cartilage proteoglycan core protein deduced from cDNA clones. J Biol Chem. 1987 Dec 25;262(36):17757–17767. [PubMed] [Google Scholar]
  16. Erickson P. F., Minier L. N., Lasher R. S. Quantitative electrophoretic transfer of polypeptides from SDS polyacrylamide gels to nitrocellulose sheets: a method for their re-use in immunoautoradiographic detection of antigens. J Immunol Methods. 1982 Jun 11;51(2):241–249. doi: 10.1016/0022-1759(82)90263-0. [DOI] [PubMed] [Google Scholar]
  17. Fernandez M. S., Dennis J. E., Drushel R. F., Carrino D. A., Kimata K., Yamagata M., Caplan A. I. The dynamics of compartmentalization of embryonic muscle by extracellular matrix molecules. Dev Biol. 1991 Sep;147(1):46–61. doi: 10.1016/s0012-1606(05)80006-5. [DOI] [PubMed] [Google Scholar]
  18. Fosang A. J., Hardingham T. E. 1-C-6 epitope in cartilage proteoglycan G2 domain is masked by keratan sulphate. Biochem J. 1991 Jan 15;273(Pt 2):369–373. doi: 10.1042/bj2730369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gershoni J. M., Palade G. E. Protein blotting: principles and applications. Anal Biochem. 1983 May;131(1):1–15. doi: 10.1016/0003-2697(83)90128-8. [DOI] [PubMed] [Google Scholar]
  20. Habuchi H., Kimata K., Suzuki S. Changes in proteoglycan composition during development of rat skin. The occurrence in fetal skin of a chondroitin sulfate proteoglycan with high turnover rate. J Biol Chem. 1986 Jan 25;261(3):1031–1040. [PubMed] [Google Scholar]
  21. Hardingham T. E., Fosang A. J. Proteoglycans: many forms and many functions. FASEB J. 1992 Feb 1;6(3):861–870. [PubMed] [Google Scholar]
  22. Hascall V. C., Oegema T. R., Brown M., Caplan A. I. Isolation and characterization of proteoglycans from chick limb bud chondrocytes grown in vitro. J Biol Chem. 1976 Jun 10;251(11):3511–3519. [PubMed] [Google Scholar]
  23. Heinegård D., Björne-Persson A., Cöster L., Franzén A., Gardell S., Malmström A., Paulsson M., Sandfalk R., Vogel K. The core proteins of large and small interstitial proteoglycans from various connective tissues form distinct subgroups. Biochem J. 1985 Aug 15;230(1):181–194. doi: 10.1042/bj2300181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kiang W. L., Margolis R. U., Margolis R. K. Fractionation and properties of a chondroitin sulfate proteoglycan and the soluble glycoproteins of brain. J Biol Chem. 1981 Oct 25;256(20):10529–10537. [PubMed] [Google Scholar]
  25. Kimata K., Oike Y., Tani K., Shinomura T., Yamagata M., Uritani M., Suzuki S. A large chondroitin sulfate proteoglycan (PG-M) synthesized before chondrogenesis in the limb bud of chick embryo. J Biol Chem. 1986 Oct 15;261(29):13517–13525. [PubMed] [Google Scholar]
  26. Krueger R. C., Jr, Fields T. A., Mensch J. R., Jr, Schwartz N. B. Chick cartilage chondroitin sulfate proteoglycan core protein. II. Nucleotide sequence of cDNA clone and localization of the S103L epitope. J Biol Chem. 1990 Jul 15;265(20):12088–12097. [PubMed] [Google Scholar]
  27. Krueger R. C., Jr, Hennig A. K., Schwartz N. B. Two immunologically and developmentally distinct chondroitin sulfate proteolglycans in embryonic chick brain. J Biol Chem. 1992 Jun 15;267(17):12149–12161. [PubMed] [Google Scholar]
  28. Kuettner K. E., Kimura J. H. Proteoglycans: an overview. J Cell Biochem. 1985;27(4):327–336. doi: 10.1002/jcb.240270403. [DOI] [PubMed] [Google Scholar]
  29. Larjava H., Häkkinen L., Rahemtulla F. A biochemical analysis of human periodontal tissue proteoglycans. Biochem J. 1992 May 15;284(Pt 1):267–274. doi: 10.1042/bj2840267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lash J. W., Saxén L., Ekblom P. Biosynthesis of proteoglycans in organ cultures of developing kidney mesenchyme. Exp Cell Res. 1983 Aug;147(1):85–93. doi: 10.1016/0014-4827(83)90273-2. [DOI] [PubMed] [Google Scholar]
  31. Lennon D. P., Carrino D. A., Baber M. A., Caplan A. I. Generation of a monoclonal antibody against avian small dermatan sulfate proteoglycan: immunolocalization and tissue distribution of PG-II (decorin) in embryonic tissues. Matrix. 1991 Dec;11(6):412–427. doi: 10.1016/s0934-8832(11)80196-4. [DOI] [PubMed] [Google Scholar]
  32. Mason R. M., Kimura J. H., Hascall V. C. Biosynthesis of hyaluronic acid in cultures of chondrocytes from the Swarm rat chondrosarcoma. J Biol Chem. 1982 Mar 10;257(5):2236–2245. [PubMed] [Google Scholar]
  33. Matsui F., Oohira A., Shoji R., Nogami H. Three distinct molecular species of proteoglycan synthesized by the rat limb bud at the prechondrogenic stage. Arch Biochem Biophys. 1989 Nov 15;275(1):192–201. doi: 10.1016/0003-9861(89)90364-0. [DOI] [PubMed] [Google Scholar]
  34. Morris J. E., Ting Y. P. Comparison of proteoglycans extracted by saline and guanidinium chloride from cultured chick retinas. J Neurochem. 1981 Dec;37(6):1594–1602. doi: 10.1111/j.1471-4159.1981.tb06332.x. [DOI] [PubMed] [Google Scholar]
  35. Mould A. P., Holmes D. F., Kadler K. E., Chapman J. A. Mica sandwich technique for preparing macromolecules for rotary shadowing. J Ultrastruct Res. 1985 Apr;91(1):66–76. doi: 10.1016/0889-1605(85)90077-1. [DOI] [PubMed] [Google Scholar]
  36. Mörgelin M., Paulsson M., Malmström A., Heinegård D. Shared and distinct structural features of interstitial proteoglycans from different bovine tissues revealed by electron microscopy. J Biol Chem. 1989 Jul 15;264(20):12080–12090. [PubMed] [Google Scholar]
  37. Noonan D. M., Malemud D. J., Przybylski R. J. Biosynthesis of heparan sulfate proteoglycans of developing chick breast skeletal muscle in vitro. Exp Cell Res. 1986 Oct;166(2):327–339. doi: 10.1016/0014-4827(86)90480-5. [DOI] [PubMed] [Google Scholar]
  38. Oike Y., Kimata K., Shinomura T., Nakazawa K., Suzuki S. Structural analysis of chick-embryo cartilage proteoglycan by selective degradation with chondroitin lyases (chondroitinases) and endo-beta-D-galactosidase (keratanase). Biochem J. 1980 Oct 1;191(1):193–207. doi: 10.1042/bj1910193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Oohira A., Matsui F., Matsuda M., Takida Y., Kuboki Y. Occurrence of three distinct molecular species of chondroitin sulfate proteoglycan in the developing rat brain. J Biol Chem. 1988 Jul 25;263(21):10240–10246. [PubMed] [Google Scholar]
  40. Osdoby P., Caplan A. I. Osteogenesis in cultures of limb mesenchymal cells. Dev Biol. 1979 Nov;73(1):84–102. doi: 10.1016/0012-1606(79)90140-4. [DOI] [PubMed] [Google Scholar]
  41. Pacifici M., Molinaro M. Developmental changes in glycosaminoglycans during skeletal muscle cell differentiation in culture. Exp Cell Res. 1980 Mar;126(1):143–152. doi: 10.1016/0014-4827(80)90479-6. [DOI] [PubMed] [Google Scholar]
  42. Paulsson M., Mörgelin M., Wiedemann H., Beardmore-Gray M., Dunham D., Hardingham T., Heinegård D., Timpl R., Engel J. Extended and globular protein domains in cartilage proteoglycans. Biochem J. 1987 Aug 1;245(3):763–772. doi: 10.1042/bj2450763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Platt J. L., Brown D. M., Granlund K., Oegema T. R., Klein D. J. Proteoglycan metabolism associated with mouse metanephric development: morphologic and biochemical effects of beta-D-xyloside. Dev Biol. 1987 Oct;123(2):293–306. doi: 10.1016/0012-1606(87)90388-5. [DOI] [PubMed] [Google Scholar]
  44. Ruoslahti E. Structure and biology of proteoglycans. Annu Rev Cell Biol. 1988;4:229–255. doi: 10.1146/annurev.cb.04.110188.001305. [DOI] [PubMed] [Google Scholar]
  45. Schacter L. P. Effect of conditioned media on differentiation in mass cultures of chick limb bud cells. I. Morphological effects. Exp Cell Res. 1970 Nov;63(1):19–32. doi: 10.1016/0014-4827(70)90327-7. [DOI] [PubMed] [Google Scholar]
  46. Shinomura T., Jensen K. L., Yamagata M., Kimata K., Solursh M. The distribution of mesenchyme proteoglycan (PG-M) during wing bud outgrowth. Anat Embryol (Berl) 1990;181(3):227–233. doi: 10.1007/BF00174617. [DOI] [PubMed] [Google Scholar]
  47. Shively J. E., Conrad H. E. Formation of anhydrosugars in the chemical depolymerization of heparin. Biochemistry. 1976 Sep 7;15(18):3932–3942. doi: 10.1021/bi00663a005. [DOI] [PubMed] [Google Scholar]
  48. Tovey E. R., Baldo B. A. Protein binding to nitrocellulose, nylon and PVDF membranes in immunoassays and electroblotting. J Biochem Biophys Methods. 1989 Aug-Sep;19(2-3):169–183. doi: 10.1016/0165-022x(89)90024-9. [DOI] [PubMed] [Google Scholar]
  49. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tyler J. M., Branton D. Rotary shadowing of extended molecules dried from glycerol. J Ultrastruct Res. 1980 May;71(2):95–102. doi: 10.1016/s0022-5320(80)90098-2. [DOI] [PubMed] [Google Scholar]
  51. Vogel K. G., Heinegård D. Characterization of proteoglycans from adult bovine tendon. J Biol Chem. 1985 Aug 5;260(16):9298–9306. [PubMed] [Google Scholar]
  52. Wagner W. D., Rowe H. A., Connor J. R. Biochemical characteristics of dissociatively isolated aortic proteoglycans and their binding capacity to hyaluronic acid. J Biol Chem. 1983 Sep 25;258(18):11136–11142. [PubMed] [Google Scholar]
  53. Wasserman L., Ber A., Allalouf D. Use of thin-layer chromatography in the separation of disaccharides resulting from digestion of chondroitin sulphates with chondroitinases. J Chromatogr. 1977 Jun 11;136(2):342–347. doi: 10.1016/s0021-9673(00)86291-3. [DOI] [PubMed] [Google Scholar]
  54. Wasteson A. A method for the determination of the molecular weight and molecular-weight distribution of chondroitin sulphate. J Chromatogr. 1971 Jul 8;59(1):87–97. doi: 10.1016/s0021-9673(01)80009-1. [DOI] [PubMed] [Google Scholar]
  55. Wiedemann H., Paulsson M., Timpl R., Engel J., Heinegård D. Domain structure of cartilage proteoglycans revealed by rotary shadowing of intact and fragmented molecules. Biochem J. 1984 Nov 15;224(1):331–333. doi: 10.1042/bj2240331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Wrigley N. G. The lattice spacing of crystalline catalase as an internal standard of length in electron microscopy. J Ultrastruct Res. 1968 Sep;24(5):454–464. doi: 10.1016/s0022-5320(68)80048-6. [DOI] [PubMed] [Google Scholar]
  57. Yanagishita M., Hascall V. C. Characterization of low buoyant density dermatan sulfate proteoglycans synthesized by rat ovarian granulosa cells in culture. J Biol Chem. 1983 Nov 10;258(21):12847–12856. [PubMed] [Google Scholar]
  58. Yeo T. K., Macfarlane S., Wight T. N. Characterization of a chondroitin sulfate proteoglycan synthesized by monkey arterial smooth muscle cells in vitro. Connect Tissue Res. 1992;27(4):265–277. doi: 10.3109/03008209209007001. [DOI] [PubMed] [Google Scholar]
  59. Zimmermann D. R., Ruoslahti E. Multiple domains of the large fibroblast proteoglycan, versican. EMBO J. 1989 Oct;8(10):2975–2981. doi: 10.1002/j.1460-2075.1989.tb08447.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES