Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Feb 15;298(Pt 1):231–235. doi: 10.1042/bj2980231

Differential inactivation of mammalian and Escherichia coli O6-alkylguanine-DNA alkyltransferases by O6-benzylguanine.

R H Elder 1, G P Margison 1, J A Rafferty 1
PMCID: PMC1138006  PMID: 8129725

Abstract

The action of O6-benzylguanine (O6-BzlG) on recombinant mammalian and Escherichia coli O6-alkylguanine-DNA alkyltransferases (ATase; EC 2.1.1.63; methylated-DNA-protein-cysteine methyltransferase) was compared by preincubation of these proteins with the base, followed by measurement of residual ATase activity using [3H]methylated substrate DNA. All of the mammalian proteins examined were inactivated by O6-BzlG (Chinese hamster: I40, 0.04 microM; human and rat: I40, 0.06 microM); however, the murine ATase was substantially more resistant requiring 4-5 fold higher concentrations of O6-BzlG to achieve the same levels of inactivation (I40, 0.28 microM). A similar differential inactivation was seen with human and murine ATases when extracts of 3T6 (murine) cells and Raji (human) cells were compared. Of the two E. coli ATase proteins, only the ogt-encoded protein was inactivated, but approximately 400 times more O6-BzlG was required to achieve a level of inactivation similar to that seen with the human protein (I40, 24.8 microM). When O6-BzlG was present in an oligonucleotide, the differential effect on the murine, human and ogt-encoded ATases was not seen and only the ada-encoded ATase remained refractory under the conditions used.

Full text

PDF
231

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baer J. C., Freeman A. A., Newlands E. S., Watson A. J., Rafferty J. A., Margison G. P. Depletion of O6-alkylguanine-DNA alkyltransferase correlates with potentiation of temozolomide and CCNU toxicity in human tumour cells. Br J Cancer. 1993 Jun;67(6):1299–1302. doi: 10.1038/bjc.1993.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brennand J., Margison G. P. Expression in mammalian cells of a truncated Escherichia coli gene coding for O6-alkylguanine alkyltransferase reduces the toxic effects of alkylating agents. Carcinogenesis. 1986 Dec;7(12):2081–2084. doi: 10.1093/carcin/7.12.2081. [DOI] [PubMed] [Google Scholar]
  3. D'Incalci M., Citti L., Taverna P., Catapano C. V. Importance of the DNA repair enzyme O6-alkyl guanine alkyltransferase (AT) in cancer chemotherapy. Cancer Treat Rev. 1988 Dec;15(4):279–292. doi: 10.1016/0305-7372(88)90026-6. [DOI] [PubMed] [Google Scholar]
  4. Dolan M. E., Mitchell R. B., Mummert C., Moschel R. C., Pegg A. E. Effect of O6-benzylguanine analogues on sensitivity of human tumor cells to the cytotoxic effects of alkylating agents. Cancer Res. 1991 Jul 1;51(13):3367–3372. [PubMed] [Google Scholar]
  5. Dolan M. E., Stine L., Mitchell R. B., Moschel R. C., Pegg A. E. Modulation of mammalian O6-alkylguanine-DNA alkyltransferase in vivo by O6-benzylguanine and its effect on the sensitivity of a human glioma tumor to 1-(2-chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea. Cancer Commun. 1990;2(11):371–377. doi: 10.3727/095535490820873985. [DOI] [PubMed] [Google Scholar]
  6. Elder R. H., Tumelty J., Douglas K. T., Margison G. P., Rafferty J. A. C-terminally truncated human O6-alkylguanine-DNA alkyltransferase retains activity. Biochem J. 1992 Aug 1;285(Pt 3):707–709. doi: 10.1042/bj2850707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fan C. Y., Potter P. M., Rafferty J., Watson A. J., Cawkwell L., Searle P. F., O'Connor P. J., Margison G. P. Expression of a human O6-alkylguanine-DNA-alkyltransferase cDNA in human cells and transgenic mice. Nucleic Acids Res. 1990 Oct 11;18(19):5723–5727. doi: 10.1093/nar/18.19.5723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Friedman H. S., Dolan M. E., Moschel R. C., Pegg A. E., Felker G. M., Rich J., Bigner D. D., Schold S. C., Jr Enhancement of nitrosourea activity in medulloblastoma and glioblastoma multiforme. J Natl Cancer Inst. 1992 Dec 16;84(24):1926–1931. doi: 10.1093/jnci/84.24.1926. [DOI] [PubMed] [Google Scholar]
  9. Jelinek J., Kleibl K., Dexter T. M., Margison G. P. Transfection of murine multi-potent haemopoietic stem cells with an E. coli DNA alkyltransferase gene confers resistance to the toxic effects of alkylating agents. Carcinogenesis. 1988 Jan;9(1):81–87. doi: 10.1093/carcin/9.1.81. [DOI] [PubMed] [Google Scholar]
  10. Lee S. M., Margison G. P., Woodcock A. A., Thatcher N. Sequential administration of varying doses of dacarbazine and fotemustine in advanced malignant melanoma. Br J Cancer. 1993 Jun;67(6):1356–1360. doi: 10.1038/bjc.1993.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lee S. M., Thatcher N., Dougal M., Margison G. P. Dosage and cycle effects of dacarbazine (DTIC) and fotemustine on O6-alkylguanine-DNA alkyltransferase in human peripheral blood mononuclear cells. Br J Cancer. 1993 Feb;67(2):216–221. doi: 10.1038/bjc.1993.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lee S. M., Thatcher N., Margison G. P. O6-alkylguanine-DNA alkyltransferase depletion and regeneration in human peripheral lymphocytes following dacarbazine and fotemustine. Cancer Res. 1991 Jan 15;51(2):619–623. [PubMed] [Google Scholar]
  13. Lindahl T., Sedgwick B., Sekiguchi M., Nakabeppu Y. Regulation and expression of the adaptive response to alkylating agents. Annu Rev Biochem. 1988;57:133–157. doi: 10.1146/annurev.bi.57.070188.001025. [DOI] [PubMed] [Google Scholar]
  14. Margison G. P., Cooper D. P., Brennand J. Cloning of the E. coli O6-methylguanine and methylphosphotriester methyltransferase gene using a functional DNA repair assay. Nucleic Acids Res. 1985 Mar 25;13(6):1939–1952. doi: 10.1093/nar/13.6.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mitchell R. B., Moschel R. C., Dolan M. E. Effect of O6-benzylguanine on the sensitivity of human tumor xenografts to 1,3-bis(2-chloroethyl)-1-nitrosourea and on DNA interstrand cross-link formation. Cancer Res. 1992 Mar 1;52(5):1171–1175. [PubMed] [Google Scholar]
  16. Morten J. E., Margison G. P. Increased O6-alkylguanine alkyltransferase activity in Chinese hamster V79 cells following selection with chloroethylating agents. Carcinogenesis. 1988 Jan;9(1):45–49. doi: 10.1093/carcin/9.1.45. [DOI] [PubMed] [Google Scholar]
  17. Moschel R. C., McDougall M. G., Dolan M. E., Stine L., Pegg A. E. Structural features of substituted purine derivatives compatible with depletion of human O6-alkylguanine-DNA alkyltransferase. J Med Chem. 1992 Nov 13;35(23):4486–4491. doi: 10.1021/jm00101a028. [DOI] [PubMed] [Google Scholar]
  18. Pauly G. T., Powers M., Pei G. K., Moschel R. C. Synthesis and properties of H-ras DNA sequences containing O6-substituted 2'-deoxyguanosine residues at the first, second, or both positions of codon 12. Chem Res Toxicol. 1988 Nov-Dec;1(6):391–397. doi: 10.1021/tx00006a011. [DOI] [PubMed] [Google Scholar]
  19. Potter P. M., Rafferty J. A., Cawkwell L., Wilkinson M. C., Cooper D. P., O'Connor P. J., Margison G. P. Isolation and cDNA cloning of a rat O6-alkylguanine-DNA-alkyltransferase gene, molecular analysis of expression in rat liver. Carcinogenesis. 1991 Apr;12(4):727–733. doi: 10.1093/carcin/12.4.727. [DOI] [PubMed] [Google Scholar]
  20. Potter P. M., Wilkinson M. C., Fitton J., Carr F. J., Brennand J., Cooper D. P., Margison G. P. Characterisation and nucleotide sequence of ogt, the O6-alkylguanine-DNA-alkyltransferase gene of E. coli. Nucleic Acids Res. 1987 Nov 25;15(22):9177–9193. doi: 10.1093/nar/15.22.9177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rafferty J. A., Elder R. H., Watson A. J., Cawkwell L., Potter P. M., Margison G. P. Isolation and partial characterisation of a Chinese hamster O6-alkylguanine-DNA alkyltransferase cDNA. Nucleic Acids Res. 1992 Apr 25;20(8):1891–1895. doi: 10.1093/nar/20.8.1891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Santibanez-Koref M., Elder R. H., Fan C. Y., Cawkwell L., McKie J. H., Douglas K. T., Margison G. P., Rafferty J. A. Isolation and partial characterization of murine O6-alkylguanine-DNA-alkyltransferase: comparative sequence and structural properties. Mol Carcinog. 1992;5(2):161–169. doi: 10.1002/mc.2940050212. [DOI] [PubMed] [Google Scholar]
  23. Tano K., Shiota S., Collier J., Foote R. S., Mitra S. Isolation and structural characterization of a cDNA clone encoding the human DNA repair protein for O6-alkylguanine. Proc Natl Acad Sci U S A. 1990 Jan;87(2):686–690. doi: 10.1073/pnas.87.2.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wilkinson M. C., Cooper D. P., Southan C., Potter P. M., Margison G. P. Purification to apparent homogeneity and partial amino acid sequence of rat liver O6-alkylguanine-DNA-alkyltransferase. Nucleic Acids Res. 1990 Jan 11;18(1):13–16. doi: 10.1093/nar/18.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wilkinson M. C., Potter P. M., Cawkwell L., Georgiadis P., Patel D., Swann P. F., Margison G. P. Purification of the E. coli ogt gene product to homogeneity and its rate of action on O6-methylguanine, O6-ethylguanine and O4-methylthymine in dodecadeoxyribonucleotides. Nucleic Acids Res. 1989 Nov 11;17(21):8475–8484. doi: 10.1093/nar/17.21.8475. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES