Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Apr 1;299(Pt 1):123–128. doi: 10.1042/bj2990123

Identification of the glycogenic compound 5-iodotubercidin as a general protein kinase inhibitor.

D Massillon 1, W Stalmans 1, G van de Werve 1, M Bollen 1
PMCID: PMC1138030  PMID: 8166629

Abstract

Addition of micromolar concentrations of the adenosine derivative 5-iodotubercidin (Itu) initiates glycogen synthesis in isolated hepatocytes by causing inactivation of phosphorylase and activation of glycogen synthase [Flückiger-Isler and Walter (1993) Biochem. J. 292, 85-91]. We report here that Itu also antagonizes the effects of saturating concentrations of glucagon and vasopressin on these enzymes. The Itu-induced activation of glycogen synthase could not be explained by the removal of phosphorylase a (a potent inhibitor of the glycogen-associated synthase phosphatase). When tested on purified enzymes, Itu did not affect the activities of the major Ser/Thr-specific protein phosphatases (PP-1, PP-2A, PP-2B and PP-2C), but it inhibited various Ser/Thr-specific protein kinases as well as the tyrosine kinase activity of the insulin receptor (IC50 between 0.4 and 28 microM at 10-15 microM ATP). Tubercidin, which did not affect glycogen synthase or phosphorylase in liver cells, was 300 times less potent as a protein kinase inhibitor. Kinetic analysis of the inhibition of casein kinase-1 and protein kinase A showed that Itu acts as a competitive inhibitor with respect to ATP, and as a mixed-type inhibitor with respect to the protein substrate. We propose that Itu inactivates phosphorylase and activates glycogen synthase by inhibiting phosphorylase kinase and various glycogen synthase kinases. Consistent with the broad specificity of Itu in vitro, this compound decreased the phosphorylation level of numerous phosphopolypeptides in intact liver cells. Our data suggest that at least some of the biological effects of Itu can be explained by an inhibition of protein kinases.

Full text

PDF
123

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agostinis P., Marin O., James P., Hendrix P., Merlevede W., Vandenheede J. R., Pinna L. A. Phosphorylation of the phosphatase modulator subunit (inhibitor-2) by casein kinase-1. Identification of the phosphorylation sites. FEBS Lett. 1992 Jun 29;305(2):121–124. doi: 10.1016/0014-5793(92)80877-j. [DOI] [PubMed] [Google Scholar]
  2. Antoniw J. F., Nimmo H. G., Yeaman S. J., Cohen P. Comparison of the substrate specificities of protein phosphatases involved in the regulation of glycogen metabolism in rabbit skeletal muscle. Biochem J. 1977 Feb 15;162(2):423–433. doi: 10.1042/bj1620423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Azhar S., Butte J., Reaven E. Identification of isoenzymic forms of hepatic Ca2+-activated-phospholipid-dependent protein kinase in various animal models. Biochem Biophys Res Commun. 1988 Sep 15;155(2):1017–1025. doi: 10.1016/s0006-291x(88)80598-9. [DOI] [PubMed] [Google Scholar]
  4. Baquet A., Hue L., Meijer A. J., van Woerkom G. M., Plomp P. J. Swelling of rat hepatocytes stimulates glycogen synthesis. J Biol Chem. 1990 Jan 15;265(2):955–959. [PubMed] [Google Scholar]
  5. Bergstrom D. E., Brattesani A. J., Ogawa M. K., Reddy P. A., Schweickert M. J., Balzarini J., De Clercq E. Antiviral activity of C-5 substituted tubercidin analogues. J Med Chem. 1984 Mar;27(3):285–292. doi: 10.1021/jm00369a010. [DOI] [PubMed] [Google Scholar]
  6. Beullens M., Van Eynde A., Stalmans W., Bollen M. The isolation of novel inhibitory polypeptides of protein phosphatase 1 from bovine thymus nuclei. J Biol Chem. 1992 Aug 15;267(23):16538–16544. [PubMed] [Google Scholar]
  7. Bollen M., Hue L., Stalmans W. Effects of glucose on phosphorylase and glycogen synthase in hepatocytes from diabetic rats. Biochem J. 1983 Mar 15;210(3):783–787. doi: 10.1042/bj2100783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bollen M., Kee S. M., Graves D. J., Soderling T. R. Substrate specificity of phosphorylase kinase: effects of heparin and calcium. Arch Biochem Biophys. 1987 May 1;254(2):437–447. doi: 10.1016/0003-9861(87)90122-6. [DOI] [PubMed] [Google Scholar]
  9. Bollen M., Stalmans W. The structure, role, and regulation of type 1 protein phosphatases. Crit Rev Biochem Mol Biol. 1992;27(3):227–281. doi: 10.3109/10409239209082564. [DOI] [PubMed] [Google Scholar]
  10. Carabaza A., Ciudad C. J., Baqué S., Guinovart J. J. Glucose has to be phosphorylated to activate glycogen synthase, but not to inactivate glycogen phosphorylase in hepatocytes. FEBS Lett. 1992 Jan 20;296(2):211–214. doi: 10.1016/0014-5793(92)80381-p. [DOI] [PubMed] [Google Scholar]
  11. Cobb M. H., Sang B. C., Gonzalez R., Goldsmith E., Ellis L. Autophosphorylation activates the soluble cytoplasmic domain of the insulin receptor in an intermolecular reaction. J Biol Chem. 1989 Nov 5;264(31):18701–18706. [PubMed] [Google Scholar]
  12. Davies D. R., Detheux M., Van Schaftingen E. Fructose 1-phosphate and the regulation of glucokinase activity in isolated hepatocytes. Eur J Biochem. 1990 Sep 11;192(2):283–289. doi: 10.1111/j.1432-1033.1990.tb19225.x. [DOI] [PubMed] [Google Scholar]
  13. Davies L. P., Baird-Lambert J., Marwood J. F. Studies on several pyrrolo[2,3-d]pyrimidine analogues of adenosine which lack significant agonist activity at A1 and A2 receptors but have potent pharmacological activity in vivo. Biochem Pharmacol. 1986 Sep 15;35(18):3021–3029. doi: 10.1016/0006-2952(86)90381-3. [DOI] [PubMed] [Google Scholar]
  14. Davies L. P., Jamieson D. D., Baird-Lambert J. A., Kazlauskas R. Halogenated pyrrolopyrimidine analogues of adenosine from marine organisms: pharmacological activities and potent inhibition of adenosine kinase. Biochem Pharmacol. 1984 Feb 1;33(3):347–355. doi: 10.1016/0006-2952(84)90225-9. [DOI] [PubMed] [Google Scholar]
  15. DeGuzman A., Lee E. Y. Preparation of low-molecular-weight forms of rabbit muscle protein phosphatase. Methods Enzymol. 1988;159:356–368. doi: 10.1016/0076-6879(88)59036-5. [DOI] [PubMed] [Google Scholar]
  16. Doperé F., Vanstapel F., Stalmans W. Glycogen-synthase phosphatase activity in rat liver. Two protein components and their requirement for the activation of different types of substrate. Eur J Biochem. 1980 Feb;104(1):137–146. doi: 10.1111/j.1432-1033.1980.tb04409.x. [DOI] [PubMed] [Google Scholar]
  17. Ellis L., Levitan A., Cobb M. H., Ramos P. Efficient expression in insect cells of a soluble, active human insulin receptor protein-tyrosine kinase domain by use of a baculovirus vector. J Virol. 1988 May;62(5):1634–1639. doi: 10.1128/jvi.62.5.1634-1639.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. FISCHER E. H., KREBS E. G. The isolation and crystallization of rabbit skeletal muscle phosphorylase b. J Biol Chem. 1958 Mar;231(1):65–71. [PubMed] [Google Scholar]
  19. Flückiger-Isler R. E., Walter P. Stimulation of rat liver glycogen synthesis by the adenosine kinase inhibitor 5-iodotubercidin. Biochem J. 1993 May 15;292(Pt 1):85–91. doi: 10.1042/bj2920085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hidaka H., Kobayashi R. Pharmacology of protein kinase inhibitors. Annu Rev Pharmacol Toxicol. 1992;32:377–397. doi: 10.1146/annurev.pa.32.040192.002113. [DOI] [PubMed] [Google Scholar]
  21. Holen I., Gordon P. B., Seglen P. O. Protein kinase-dependent effects of okadaic acid on hepatocytic autophagy and cytoskeletal integrity. Biochem J. 1992 Jun 15;284(Pt 3):633–636. doi: 10.1042/bj2840633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kasvinsky P. J., Fletterick R. J., Madsen N. B. Regulation of the dephosphorylation of glycogen phosphorylase a and synthase b by glucose and caffeine in isolated hepatocytes. Can J Biochem. 1981 Jun;59(6):387–395. doi: 10.1139/o81-054. [DOI] [PubMed] [Google Scholar]
  23. Keppens S., Vandekerckhove A., De Wulf H. Characterization of the effects of adenosine 5'-[beta-thio]-diphosphate in rat liver. Br J Pharmacol. 1993 Mar;108(3):663–668. doi: 10.1111/j.1476-5381.1993.tb12858.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Meijer A. J., Baquet A., Gustafson L., van Woerkom G. M., Hue L. Mechanism of activation of liver glycogen synthase by swelling. J Biol Chem. 1992 Mar 25;267(9):5823–5828. [PubMed] [Google Scholar]
  25. Mercier J. C., Maubois J. L., Poznanski S., Ribadeau-Dumas B. Fractionnement préparatif des caséines de vache et de brebis par chromatographie sur D.E.A.E. cellulose, en milieu urée et 2-mercaptoéthanol. Bull Soc Chim Biol (Paris) 1968;50(3):521–530. [PubMed] [Google Scholar]
  26. Newgard C. B., Hwang P. K., Fletterick R. J. The family of glycogen phosphorylases: structure and function. Crit Rev Biochem Mol Biol. 1989;24(1):69–99. doi: 10.3109/10409238909082552. [DOI] [PubMed] [Google Scholar]
  27. Ramachandran C., Goris J., Waelkens E., Merlevede W., Walsh D. A. The interrelationship between cAMP-dependent alpha and beta subunit phosphorylation in the regulation of phosphorylase kinase activity. Studies using subunit specific phosphatases. J Biol Chem. 1987 Mar 5;262(7):3210–3218. [PubMed] [Google Scholar]
  28. Sillero M. A., Sillero A., Sols A. Enzymes involved in fructose metabolism in lir and the glyceraldehyde metabolic crossroads. Eur J Biochem. 1969 Sep;10(2):345–350. doi: 10.1111/j.1432-1033.1969.tb00696.x. [DOI] [PubMed] [Google Scholar]
  29. Stalmans W., Bollen M., Mvumbi L. Control of glycogen synthesis in health and disease. Diabetes Metab Rev. 1987 Jan;3(1):127–161. doi: 10.1002/dmr.5610030107. [DOI] [PubMed] [Google Scholar]
  30. Stewart A. A., Ingebritsen T. S., Cohen P. The protein phosphatases involved in cellular regulation. 5. Purification and properties of a Ca2+/calmodulin-dependent protein phosphatase (2B) from rabbit skeletal muscle. Eur J Biochem. 1983 May 2;132(2):289–295. doi: 10.1111/j.1432-1033.1983.tb07361.x. [DOI] [PubMed] [Google Scholar]
  31. Tsuiki S., Hiraga A., Kikuchi K., Tamura S. Purification of an Mg2+-dependent protein phosphatase. Methods Enzymol. 1988;159:437–446. doi: 10.1016/0076-6879(88)59043-2. [DOI] [PubMed] [Google Scholar]
  32. Waelkens E., Goris J., Merlevede W. Purification and properties of polycation-stimulated phosphorylase phosphatases from rabbit skeletal muscle. J Biol Chem. 1987 Jan 25;262(3):1049–1059. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES