Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Apr 1;299(Pt 1):213–218. doi: 10.1042/bj2990213

Effect of sphingosine derivatives on calcium fluxes in thyroid FRTL-5 cells.

K Törnquist 1, E Ekokoski 1
PMCID: PMC1138044  PMID: 8166643

Abstract

The effects of sphingosine derivatives on Ca2+ fluxes were investigated in thyroid FRTL-5 cells labelled with Fura 2. Addition of sphingosylphosphocholine (SPC) or sphingosine (SP) increased intracellular free Ca2+ ([Ca2+]i) in a dose-dependent manner. At the highest dose tested (30 microM), the response was biphasic: a rapid transient increase in [Ca2+]i, followed by a new, elevated, level of [Ca2+]i. Both phases of the SPC-evoked increase in [Ca2+]i were dependent on extracellular Ca2+, whereas only the SP-evoked elevated level of [Ca2+]i was dependent on the influx of Ca2+. Both compounds released sequestered Ca2+ from thapsigargin- and inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ pools. In addition, the increase in [Ca2+]i in response to SPC, but not to SP, was attenuated in cells treated with phorbol myristate acetate or with the putative Ca(2+)-channel blocker SKF 96365, and in cells pretreated with pertussis toxin for 24 h. SPC did not activate the production of IP3. Furthermore, both SPC and SP released sequestered Ca2+ from permeabilized cells. We observed that SPC, but not SP, stimulated release of [3H]arachidonate from cells prelabelled with [3H]arachidonate for 24 h. Both SPC and SP stimulated the incorporation of [3H]thymidine into DNA in cells grown in the absence of thyroid-stimulating hormone (TSH). The results suggest that sphingosine derivatives are putative regulators of Ca2+ fluxes in FRTL-5 cells, and that SP and SPC may act on [Ca2+]i via different mechanisms. Furthermore, both SP and SPC may be of importance in modulating thyroid-cell proliferation.

Full text

PDF
213

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez J., Montero M., Garcia-Sancho J. Cytochrome P450 may regulate plasma membrane Ca2+ permeability according to the filling state of the intracellular Ca2+ stores. FASEB J. 1992 Jan 6;6(2):786–792. doi: 10.1096/fasebj.6.2.1537469. [DOI] [PubMed] [Google Scholar]
  2. Ambesi-Impiombato F. S., Parks L. A., Coon H. G. Culture of hormone-dependent functional epithelial cells from rat thyroids. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3455–3459. doi: 10.1073/pnas.77.6.3455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brenner-Gati L., Berg K. A., Gershengorn M. C. Thyroid-stimulating hormone and insulin-like growth factor-1 synergize to elevate 1,2-diacylglycerol in rat thyroid cells. Stimulation of DNA synthesis via interaction between lipid and adenylyl cyclase signal transduction systems. J Clin Invest. 1988 Sep;82(3):1144–1148. doi: 10.1172/JCI113672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buehrer B. M., Bell R. M. Inhibition of sphingosine kinase in vitro and in platelets. Implications for signal transduction pathways. J Biol Chem. 1992 Feb 15;267(5):3154–3159. [PubMed] [Google Scholar]
  5. Burch R. M., Luini A., Mais D. E., Corda D., Vanderhoek J. Y., Kohn L. D., Axelrod J. Alpha 1-adrenergic stimulation of arachidonic acid release and metabolism in a rat thyroid cell line. Mediation of cell replication by prostaglandin E2. J Biol Chem. 1986 Aug 25;261(24):11236–11241. [PubMed] [Google Scholar]
  6. Corda D., Marcocci C., Kohn L. D., Axelrod J., Luini A. Association of the changes in cytosolic Ca2+ and iodide efflux induced by thyrotropin and by the stimulation of alpha 1-adrenergic receptors in cultured rat thyroid cells. J Biol Chem. 1985 Aug 5;260(16):9230–9236. [PubMed] [Google Scholar]
  7. Desai N. N., Carlson R. O., Mattie M. E., Olivera A., Buckley N. E., Seki T., Brooker G., Spiegel S. Signaling pathways for sphingosylphosphorylcholine-mediated mitogenesis in Swiss 3T3 fibroblasts. J Cell Biol. 1993 Jun;121(6):1385–1395. doi: 10.1083/jcb.121.6.1385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Di Girolamo M., D'Arcangelo D., Bizzarri C., Corda D. Muscarinic regulation of phospholipase A2 and iodide fluxes in FRTL-5 thyroid cells. Acta Endocrinol (Copenh) 1991 Aug;125(2):192–200. doi: 10.1530/acta.0.1250192. [DOI] [PubMed] [Google Scholar]
  9. Ghosh T. K., Bian J., Gill D. L. Intracellular calcium release mediated by sphingosine derivatives generated in cells. Science. 1990 Jun 29;248(4963):1653–1656. doi: 10.1126/science.2163543. [DOI] [PubMed] [Google Scholar]
  10. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  11. Hannun Y. A., Bell R. M. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science. 1989 Jan 27;243(4890):500–507. doi: 10.1126/science.2643164. [DOI] [PubMed] [Google Scholar]
  12. Jefferson A. B., Schulman H. Sphingosine inhibits calmodulin-dependent enzymes. J Biol Chem. 1988 Oct 25;263(30):15241–15244. [PubMed] [Google Scholar]
  13. Lombardi A., Veneziani B. M., Tramontano D., Ingbar S. H. Independent and interactive effects of tetradecanoyl phorbol acetate on growth and differentiated functions of FRTL5 cells. Endocrinology. 1988 Sep;123(3):1544–1552. doi: 10.1210/endo-123-3-1544. [DOI] [PubMed] [Google Scholar]
  14. Mason M. J., Mayer B., Hymel L. J. Inhibition of Ca2+ transport pathways in thymic lymphocytes by econazole, miconazole, and SKF 96365. Am J Physiol. 1993 Mar;264(3 Pt 1):C654–C662. doi: 10.1152/ajpcell.1993.264.3.C654. [DOI] [PubMed] [Google Scholar]
  15. Merrill A. H., Jr, Stevens V. L. Modulation of protein kinase C and diverse cell functions by sphingosine--a pharmacologically interesting compound linking sphingolipids and signal transduction. Biochim Biophys Acta. 1989 Feb 9;1010(2):131–139. doi: 10.1016/0167-4889(89)90152-3. [DOI] [PubMed] [Google Scholar]
  16. Mockel J., Delcroix C., Rodesch F., Dumont J. E. Regulation of calcium fluxes in the thyroid. Mol Cell Endocrinol. 1987 May;51(1-2):95–104. doi: 10.1016/0303-7207(87)90123-7. [DOI] [PubMed] [Google Scholar]
  17. Okajima F., Sho K., Kondo Y. Inhibition by islet-activating protein, pertussis toxin, of P2-purinergic receptor-mediated iodide efflux and phosphoinositide turnover in FRTL-5 cells. Endocrinology. 1988 Aug;123(2):1035–1043. doi: 10.1210/endo-123-2-1035. [DOI] [PubMed] [Google Scholar]
  18. Sho K. M., Okajima F., Abdul Majid M., Kondo Y. Reciprocal modulation of thyrotropin actions by P1-purinergic agonists in FRTL-5 thyroid cells. Inhibition of cAMP pathway and stimulation of phospholipase C-Ca2+ pathway. J Biol Chem. 1991 Jul 5;266(19):12180–12184. [PubMed] [Google Scholar]
  19. Tahara K., Grollman E. F., Saji M., Kohn L. D. Regulation of prostaglandin synthesis by thyrotropin, insulin or insulin-like growth factor-I, and serum in FRTL-5 rat thyroid cells. J Biol Chem. 1991 Jan 5;266(1):440–448. [PubMed] [Google Scholar]
  20. Törnquist K. ATP-induced entry of calcium in thyroid FRTL-5 cells. Studies with phorbol myristate acetate and thapsigargin. Mol Cell Endocrinol. 1993 May;93(1):17–21. doi: 10.1016/0303-7207(93)90134-6. [DOI] [PubMed] [Google Scholar]
  21. Törnquist K. Evidence for receptor-mediated calcium entry and refilling of intracellular calcium stores in FRTL-5 rat thyroid cells. J Cell Physiol. 1992 Jan;150(1):90–98. doi: 10.1002/jcp.1041500113. [DOI] [PubMed] [Google Scholar]
  22. Törnquist K. Modulatory effect of protein kinase C on thapsigargin-induced calcium entry in thyroid FRTL-5 cells. Biochem J. 1993 Mar 1;290(Pt 2):443–447. doi: 10.1042/bj2900443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Törnquist K. The calmodulin antagonist W-7 depletes intracellular calcium stores in FRTL-5 thyroid cells. Biochem Biophys Res Commun. 1993 Jan 15;190(1):37–41. doi: 10.1006/bbrc.1993.1007. [DOI] [PubMed] [Google Scholar]
  24. Valente W. A., Vitti P., Kohn L. D., Brandi M. L., Rotella C. M., Toccafondi R., Tramontano D., Aloj S. M., Ambesi-Impiombato F. S. The relationship of growth and adenylate cyclase activity in cultured thyroid cells: separate bioeffects of thyrotropin. Endocrinology. 1983 Jan;112(1):71–79. doi: 10.1210/endo-112-1-71. [DOI] [PubMed] [Google Scholar]
  25. Vassart G., Dumont J. E. The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr Rev. 1992 Aug;13(3):596–611. doi: 10.1210/edrv-13-3-596. [DOI] [PubMed] [Google Scholar]
  26. Wong K., Kwan-Yeung L. Sphingosine mobilizes intracellular calcium in human neutrophils. Cell Calcium. 1993 Jun;14(6):493–505. doi: 10.1016/0143-4160(93)90008-t. [DOI] [PubMed] [Google Scholar]
  27. Yule D. I., Wu D., Essington T. E., Shayman J. A., Williams J. A. Sphingosine metabolism induces Ca2+ oscillations in rat pancreatic acinar cells. J Biol Chem. 1993 Jun 15;268(17):12353–12358. [PubMed] [Google Scholar]
  28. Zhang H., Desai N. N., Olivera A., Seki T., Brooker G., Spiegel S. Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. J Cell Biol. 1991 Jul;114(1):155–167. doi: 10.1083/jcb.114.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES