Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Apr 1;299(Pt 1):247–252. doi: 10.1042/bj2990247

Subcellular localization and characterization of nitric oxide synthase(s) in endothelial cells: physiological implications.

M Hecker 1, A Mülsch 1, E Bassenge 1, U Förstermann 1, R Busse 1
PMCID: PMC1138048  PMID: 7513152

Abstract

Endothelial cells (EC) contain a constitutive Ca2+/calmodulin-dependent nitric oxide (NO) synthase (cNOS) which plays an important role in the local control of vascular tone. We compared the subcellular distribution of this enzyme in cultured and freshly isolated pig EC by determination of specific cNOS activity and immunoblot analysis. Similar studies were also performed with cultured and freshly isolated bovine and cultured human EC. Enzyme activity was predominantly (> 70%) associated with the particulate fraction of all EC types tested and was highest in freshly isolated porcine EC. Both specific cNOS activity and immunoreactivity were substantially higher (> 3-fold) in the microsomal as compared with the soluble fraction of all EC types tested. In freshly isolated pig EC, these two fractions also differed in terms of their Ca(2+)-dependency, pH optimum and inhibitor specificity. EC may thus contain either two different cNOS isoenzymes or a single enzyme, the conformation of which differs between the soluble and membrane-bound state. Moreover, detailed subcellular fractionation of freshly isolated pig EC revealed that the distribution of cNOS activity closely resembled that of the plasma membrane marker 5'-nucleotidase, suggesting that most, if not all, of the cNOS activity in these cells is associated with the plasma membrane. This localization might render the enzyme more susceptible to activation by physical stimuli, such as a shear stress-induced change in the fluidity of the plasma membrane. Moreover, the continuous exposure to shear stress in vivo may also upregulate cNOS expression in EC, since specific enzyme activity, immunoreactivity and basal NO release were significantly higher in freshly isolated EC as compared with cultured EC.

Full text

PDF
247

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barber A. J., Jamieson G. A. Isolation and characterization of plasma membranes from human blood platelets. J Biol Chem. 1970 Dec 10;245(23):6357–6365. [PubMed] [Google Scholar]
  2. Bhagyalakshmi A., Berthiaume F., Reich K. M., Frangos J. A. Fluid shear stress stimulates membrane phospholipid metabolism in cultured human endothelial cells. J Vasc Res. 1992 Nov-Dec;29(6):443–449. doi: 10.1159/000158963. [DOI] [PubMed] [Google Scholar]
  3. Boje K. M., Fung H. L. Endothelial nitric oxide generating enzyme(s) in the bovine aorta: subcellular location and metabolic characterization. J Pharmacol Exp Ther. 1990 Apr;253(1):20–26. [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Bredt D. S., Hwang P. M., Glatt C. E., Lowenstein C., Reed R. R., Snyder S. H. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature. 1991 Jun 27;351(6329):714–718. doi: 10.1038/351714a0. [DOI] [PubMed] [Google Scholar]
  6. Busconi L., Michel T. Endothelial nitric oxide synthase. N-terminal myristoylation determines subcellular localization. J Biol Chem. 1993 Apr 25;268(12):8410–8413. [PubMed] [Google Scholar]
  7. Förstermann U., Pollock J. S., Schmidt H. H., Heller M., Murad F. Calmodulin-dependent endothelium-derived relaxing factor/nitric oxide synthase activity is present in the particulate and cytosolic fractions of bovine aortic endothelial cells. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1788–1792. doi: 10.1073/pnas.88.5.1788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Förstermann U., Schmidt H. H., Pollock J. S., Sheng H., Mitchell J. A., Warner T. D., Nakane M., Murad F. Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochem Pharmacol. 1991 Oct 24;42(10):1849–1857. doi: 10.1016/0006-2952(91)90581-o. [DOI] [PubMed] [Google Scholar]
  9. Giovanelli J., Campos K. L., Kaufman S. Tetrahydrobiopterin, a cofactor for rat cerebellar nitric oxide synthase, does not function as a reactant in the oxygenation of arginine. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7091–7095. doi: 10.1073/pnas.88.16.7091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Habig W. H., Jakoby W. B. Assays for differentiation of glutathione S-transferases. Methods Enzymol. 1981;77:398–405. doi: 10.1016/s0076-6879(81)77053-8. [DOI] [PubMed] [Google Scholar]
  11. Hecker M., Mülsch A., Bassenge E., Busse R. Vasoconstriction and increased flow: two principal mechanisms of shear stress-dependent endothelial autacoid release. Am J Physiol. 1993 Sep;265(3 Pt 2):H828–H833. doi: 10.1152/ajpheart.1993.265.3.H828. [DOI] [PubMed] [Google Scholar]
  12. Hecker M., Walsh D. T., Vane J. R. On the substrate specificity of nitric oxide synthase. FEBS Lett. 1991 Dec 9;294(3):221–224. doi: 10.1016/0014-5793(91)81434-a. [DOI] [PubMed] [Google Scholar]
  13. Huwiler A., Fabbro D., Pfeilschifter J. Possible regulatory functions of protein kinase C-alpha and -epsilon isoenzymes in rat renal mesangial cells. Stimulation of prostaglandin synthesis and feedback inhibition of angiotensin II-stimulated phosphoinositide hydrolysis. Biochem J. 1991 Oct 15;279(Pt 2):441–445. doi: 10.1042/bj2790441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jackson W. F., Mülsch A., Busse R. Rhythmic smooth muscle activity in hamster aortas is mediated by continuous release of NO from the endothelium. Am J Physiol. 1991 Jan;260(1 Pt 2):H248–H253. doi: 10.1152/ajpheart.1991.260.1.H248. [DOI] [PubMed] [Google Scholar]
  15. Klatt P., Schmidt K., Mayer B. Brain nitric oxide synthase is a haemoprotein. Biochem J. 1992 Nov 15;288(Pt 1):15–17. doi: 10.1042/bj2880015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lamas S., Marsden P. A., Li G. K., Tempst P., Michel T. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6348–6352. doi: 10.1073/pnas.89.14.6348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lückhoff A., Busse R., Winter I., Bassenge E. Characterization of vascular relaxant factor released from cultured endothelial cells. Hypertension. 1987 Mar;9(3):295–303. doi: 10.1161/01.hyp.9.3.295. [DOI] [PubMed] [Google Scholar]
  18. Marsden P. A., Schappert K. T., Chen H. S., Flowers M., Sundell C. L., Wilcox J. N., Lamas S., Michel T. Molecular cloning and characterization of human endothelial nitric oxide synthase. FEBS Lett. 1992 Aug 3;307(3):287–293. doi: 10.1016/0014-5793(92)80697-f. [DOI] [PubMed] [Google Scholar]
  19. Michel T., Li G. K., Busconi L. Phosphorylation and subcellular translocation of endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6252–6256. doi: 10.1073/pnas.90.13.6252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  21. Mülsch A., Bassenge E., Busse R. Nitric oxide synthesis in endothelial cytosol: evidence for a calcium-dependent and a calcium-independent mechanism. Naunyn Schmiedebergs Arch Pharmacol. 1989 Dec;340(6 Pt 2):767–770. doi: 10.1007/BF00169688. [DOI] [PubMed] [Google Scholar]
  22. Mülsch A., Gerzer R. Purification of heme-containing soluble guanylyl cyclase. Methods Enzymol. 1991;195:377–383. doi: 10.1016/0076-6879(91)95183-k. [DOI] [PubMed] [Google Scholar]
  23. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 Sep;6(12):3051–3064. [PubMed] [Google Scholar]
  24. Nishida K., Harrison D. G., Navas J. P., Fisher A. A., Dockery S. P., Uematsu M., Nerem R. M., Alexander R. W., Murphy T. J. Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J Clin Invest. 1992 Nov;90(5):2092–2096. doi: 10.1172/JCI116092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sessa W. C., Barber C. M., Lynch K. R. Mutation of N-myristoylation site converts endothelial cell nitric oxide synthase from a membrane to a cytosolic protein. Circ Res. 1993 Apr;72(4):921–924. doi: 10.1161/01.res.72.4.921. [DOI] [PubMed] [Google Scholar]
  26. Stuehr D. J., Griffith O. W. Mammalian nitric oxide synthases. Adv Enzymol Relat Areas Mol Biol. 1992;65:287–346. doi: 10.1002/9780470123119.ch8. [DOI] [PubMed] [Google Scholar]
  27. Tolbert N. E. Isolation of subcellular organelles of metabolism on isopycnic sucrose gradients. Methods Enzymol. 1974;31:734–746. doi: 10.1016/0076-6879(74)31077-4. [DOI] [PubMed] [Google Scholar]
  28. White K. A., Marletta M. A. Nitric oxide synthase is a cytochrome P-450 type hemoprotein. Biochemistry. 1992 Jul 28;31(29):6627–6631. doi: 10.1021/bi00144a001. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES