Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Apr 1;299(Pt 1):253–260. doi: 10.1042/bj2990253

Expression and protein kinase C-dependent regulation of peptide/H+ co-transport system in the Caco-2 human colon carcinoma cell line.

M Brandsch 1, Y Miyamoto 1, V Ganapathy 1, F H Leibach 1
PMCID: PMC1138049  PMID: 8166648

Abstract

The characteristics of the transport of the dipeptide glycylsarcosine were studied in the human colon carcinoma cell line Caco-2 grown as a monolayer on impermeable plastic support. Transport of glycylsarcosine in these cells was found to be Na(+)-independent, but was stimulated by an inwardly directed H+ gradient. This H(+)-dependent transport of glycylsarcosine was inhibited by di- and tri-peptides and also by the beta-lactam antibiotic cephalexin, but was unaffected by the amino acids glycine and leucine. The transport system exhibited a Michaelis-Menten constant (Kt) of 1.1 +/- 0.1 mM for glycylsarcosine. The specific activity of the transport system in this cell line was found to be maximal when the cultures were confluent. Treatment of the cells with phorbol esters which activate protein kinase C resulted in a significant inhibition of the transport system. This inhibition was specific and could be blocked if treatment was done in the presence of staurosporine, an inhibitor of protein kinase C. Kinetic analysis revealed that the inhibition was associated with a decrease in the maximal velocity, the Kt remaining unaffected. The phorbol-ester-induced inhibition of the peptide-transport system was not prevented by co-treatment with cycloheximide, an inhibitor of cellular protein synthesis. In addition, there was no change in the intracellular pH following treatment with the phorbol ester, suggesting that the effect was not due to alterations in the transmembrane pH gradient. It is concluded that the peptide/H+ co-transport system, which is known to exist in the normal intestine, is expressed in Caco-2 cells and that the function of the transport system is under the regulatory control of protein kinase C.

Full text

PDF
253

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Addison J. M., Burston D., Matthews D. M. Evidence for active transport of the dipeptide glycylsarcosine by hamster jejunum in vitro. Clin Sci. 1972 Dec;43(6):907–911. doi: 10.1042/cs0430907. [DOI] [PubMed] [Google Scholar]
  2. Blais A., Bissonnette P., Berteloot A. Common characteristics for Na+-dependent sugar transport in Caco-2 cells and human fetal colon. J Membr Biol. 1987;99(2):113–125. doi: 10.1007/BF01871231. [DOI] [PubMed] [Google Scholar]
  3. Brandsch M., Miyamoto Y., Ganapathy V., Leibach F. H. Regulation of taurine transport in human colon carcinoma cell lines (HT-29 and Caco-2) by protein kinase C. Am J Physiol. 1993 May;264(5 Pt 1):G939–G946. doi: 10.1152/ajpgi.1993.264.5.G939. [DOI] [PubMed] [Google Scholar]
  4. Burnham D. B., Fondacaro J. D. Secretagogue-induced protein phosphorylation and chloride transport in Caco-2 cells. Am J Physiol. 1989 Apr;256(4 Pt 1):G808–G816. doi: 10.1152/ajpgi.1989.256.4.G808. [DOI] [PubMed] [Google Scholar]
  5. Calonge M. L., Ilundain A., Bolufer J. Ionic dependence of glycylsarcosine uptake by isolated chicken enterocytes. J Cell Physiol. 1989 Mar;138(3):579–585. doi: 10.1002/jcp.1041380319. [DOI] [PubMed] [Google Scholar]
  6. Dantzig A. H., Bergin L. Uptake of the cephalosporin, cephalexin, by a dipeptide transport carrier in the human intestinal cell line, Caco-2. Biochim Biophys Acta. 1990 Sep 7;1027(3):211–217. doi: 10.1016/0005-2736(90)90309-c. [DOI] [PubMed] [Google Scholar]
  7. Dantzig A. H., Tabas L. B., Bergin L. Cefaclor uptake by the proton-dependent dipeptide transport carrier of human intestinal Caco-2 cells and comparison to cephalexin uptake. Biochim Biophys Acta. 1992 Dec 9;1112(2):167–173. doi: 10.1016/0005-2736(92)90388-3. [DOI] [PubMed] [Google Scholar]
  8. Ganapathy, Leibach F. H. Is intestinal peptide transport energized by a proton gradient? Am J Physiol. 1985 Aug;249(2 Pt 1):G153–G160. doi: 10.1152/ajpgi.1985.249.2.G153. [DOI] [PubMed] [Google Scholar]
  9. Ganapathy V., Burckhardt G., Leibach F. H. Characteristics of glycylsarcosine transport in rabbit intestinal brush-border membrane vesicles. J Biol Chem. 1984 Jul 25;259(14):8954–8959. [PubMed] [Google Scholar]
  10. Ganapathy V., Burckhardt G., Leibach F. H. Peptide transport in rabbit intestinal brush-border membrane vesicles studied with a potential-sensitive dye. Biochim Biophys Acta. 1985 Jun 27;816(2):234–240. doi: 10.1016/0005-2736(85)90490-0. [DOI] [PubMed] [Google Scholar]
  11. Ganapathy V., Leibach F. H. Proton-coupled solute transport in the animal cell plasma membrane. Curr Opin Cell Biol. 1991 Aug;3(4):695–701. doi: 10.1016/0955-0674(91)90043-x. [DOI] [PubMed] [Google Scholar]
  12. Ganapathy V., Miyamoto Y., Tiruppathi C., Leibach F. H. Peptide transport across the animal cell plasma membrane: recent developments. Indian J Biochem Biophys. 1991 Oct-Dec;28(5-6):317–323. [PubMed] [Google Scholar]
  13. Hoshi T. Proton-coupled transport of organic solutes in animal cell membranes and its relation to Na+ transport. Jpn J Physiol. 1985;35(2):179–191. doi: 10.2170/jjphysiol.35.179. [DOI] [PubMed] [Google Scholar]
  14. Inui K., Okano T., Maegawa H., Kato M., Takano M., Hori R. H+ coupled transport of p.o. cephalosporins via dipeptide carriers in rabbit intestinal brush-border membranes: difference of transport characteristics between cefixime and cephradine. J Pharmacol Exp Ther. 1988 Oct;247(1):235–241. [PubMed] [Google Scholar]
  15. Inui K., Takano M., Okano T., Hori R. H+ gradient-dependent transport of aminocephalosporins in rat renal brush border membrane vesicles: role of H+/organic cation antiport system. J Pharmacol Exp Ther. 1985 Apr;233(1):181–185. [PubMed] [Google Scholar]
  16. Inui K., Tomita Y., Katsura T., Okano T., Takano M., Hori R. H+ coupled active transport of bestatin via the dipeptide transport system in rabbit intestinal brush-border membranes. J Pharmacol Exp Ther. 1992 Feb;260(2):482–486. [PubMed] [Google Scholar]
  17. Inui K., Yamamoto M., Saito H. Transepithelial transport of oral cephalosporins by monolayers of intestinal epithelial cell line Caco-2: specific transport systems in apical and basolateral membranes. J Pharmacol Exp Ther. 1992 Apr;261(1):195–201. [PubMed] [Google Scholar]
  18. Kraft A. S., Anderson W. B., Cooper H. L., Sando J. J. Decrease in cytosolic calcium/phospholipid-dependent protein kinase activity following phorbol ester treatment of EL4 thymoma cells. J Biol Chem. 1982 Nov 25;257(22):13193–13196. [PubMed] [Google Scholar]
  19. Kulanthaivel P., Cool D. R., Ramamoorthy S., Mahesh V. B., Leibach F. H., Ganapathy V. Transport of taurine and its regulation by protein kinase C in the JAR human placental choriocarcinoma cell line. Biochem J. 1991 Jul 1;277(Pt 1):53–58. doi: 10.1042/bj2770053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Møller J. V., Sheikh M. I. Renal organic anion transport system: pharmacological, physiological, and biochemical aspects. Pharmacol Rev. 1982 Dec;34(4):315–358. [PubMed] [Google Scholar]
  22. Nakashima E., Tsuji A., Mizuo H., Yamana T. Kinetics and mechanism of in vitro uptake of amino-beta-lactam antibiotics by rat small intestine and relation to the intact-peptide transport system. Biochem Pharmacol. 1984 Nov 1;33(21):3345–3352. doi: 10.1016/0006-2952(84)90104-7. [DOI] [PubMed] [Google Scholar]
  23. Okano T., Inui K., Maegawa H., Takano M., Hori R. H+ coupled uphill transport of aminocephalosporins via the dipeptide transport system in rabbit intestinal brush-border membranes. J Biol Chem. 1986 Oct 25;261(30):14130–14134. [PubMed] [Google Scholar]
  24. Ramamoorthy S., Tiruppathi C., Nair C. N., Mahesh V. B., Leibach F. H., Ganapathy V. Relative sensitivity to inhibition by cimetidine and clonidine differentiates between the two types of Na(+)-H+ exchangers in cultured cells. Biochem J. 1991 Dec 1;280(Pt 2):317–322. doi: 10.1042/bj2800317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
  26. Rousset M. The human colon carcinoma cell lines HT-29 and Caco-2: two in vitro models for the study of intestinal differentiation. Biochimie. 1986 Sep;68(9):1035–1040. doi: 10.1016/s0300-9084(86)80177-8. [DOI] [PubMed] [Google Scholar]
  27. Thwaites D. T., Brown C. D., Hirst B. H., Simmons N. L. Transepithelial glycylsarcosine transport in intestinal Caco-2 cells mediated by expression of H(+)-coupled carriers at both apical and basal membranes. J Biol Chem. 1993 Apr 15;268(11):7640–7642. [PubMed] [Google Scholar]
  28. Watson A. J., Levine S., Donowitz M., Montrose M. H. Kinetics and regulation of a polarized Na(+)-H+ exchanger from Caco-2 cells, a human intestinal cell line. Am J Physiol. 1991 Aug;261(2 Pt 1):G229–G238. doi: 10.1152/ajpgi.1991.261.2.G229. [DOI] [PubMed] [Google Scholar]
  29. Watson A. J., Levine S., Donowitz M., Montrose M. H. Serum regulates Na+/H+ exchange in Caco-2 cells by a mechanism which is dependent on F-actin. J Biol Chem. 1992 Jan 15;267(2):956–962. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES