Abstract
Mg(2+)-chelatase catalyses the first step unique to chlorophyll synthesis, namely the insertion of Mg2+ into protoporphyrin IX. When pea (Pisum sativum L., cv. Spring) chloroplasts are lysed in a buffer lacking Mg2+ and the thylakoids removed by centrifugation, the remaining mixture of light membranes and soluble proteins (LM/S) has high Mg(2+)-chelatase activity. Several lines of evidence are presented to show that the Mg2+ insertion catalysed by this preparation is a two-step reaction consisting of activation followed by Mg2+ chelation. An activated state of Mg(2+)-chelatase is achieved by preincubating LM/S with ATP. The activated state is observed as the elimination of the approx. 6 min lag in the rate of Mg2+ chelation on addition of the porphyrin substrate. The activity of LM/S assayed at low protein concentrations can be greatly enhanced by preincubating at high protein concentrations (12 mg/ml is optimal). This activation effect requires the presence of both LM and S fractions, as well as ATP. Both steps require ATP, but at different concentrations; the first step is optimal at > 0.5 mM (EC50 = 0.3 mM) and the second step is optimal at 0.3 mM (EC50 < 0.2 mM). ATP in the first step could be replaced by ATP[S]; this analogue could not sustain activity in the second step. This activated state was stable for at least 30 min at room temperature, but chilling of preincubated LM/S on ice for 30 min caused an almost complete loss of the activated state.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barford D., Johnson L. N. The allosteric transition of glycogen phosphorylase. Nature. 1989 Aug 24;340(6235):609–616. doi: 10.1038/340609a0. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Castelfranco P. A., Weinstein J. D., Schwarcz S., Pardo A. D., Wezelman B. E. The Mg insertion step in chlorophyll biosynthesis. Arch Biochem Biophys. 1979 Feb;192(2):592–598. doi: 10.1016/0003-9861(79)90130-9. [DOI] [PubMed] [Google Scholar]
- Dailey H. A. Spectroscopic examination of the active site of bovine ferrochelatase. Biochemistry. 1985 Mar 12;24(6):1287–1291. doi: 10.1021/bi00327a003. [DOI] [PubMed] [Google Scholar]
- Debussche L., Couder M., Thibaut D., Cameron B., Crouzet J., Blanche F. Assay, purification, and characterization of cobaltochelatase, a unique complex enzyme catalyzing cobalt insertion in hydrogenobyrinic acid a,c-diamide during coenzyme B12 biosynthesis in Pseudomonas denitrificans. J Bacteriol. 1992 Nov;174(22):7445–7451. doi: 10.1128/jb.174.22.7445-7451.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuesler T. P., Wong Y. S., Castelfranco P. A. Localization of Mg-Chelatase and Mg-Protoporphyrin IX Monomethyl Ester (Oxidative) Cyclase Activities within Isolated, Developing Cucumber Chloroplasts. Plant Physiol. 1984 Jul;75(3):662–664. doi: 10.1104/pp.75.3.662. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuesler T. P., Wright L. A., Castelfranco P. A. Properties of Magnesium Chelatase in Greening Etioplasts: METAL ION SPECIFICITY AND EFFECT OF SUBSTRATE CONCENTRATIONS. Plant Physiol. 1981 Feb;67(2):246–249. doi: 10.1104/pp.67.2.246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fufsler T. P., Castelfranco P. A., Wong Y. S. Formation of Mg-Containing Chlorophyll Precursors from Protoporphyrin IX, delta-Aminolevulinic Acid, and Glutamate in Isolated, Photosynthetically Competent, Developing Chloroplasts. Plant Physiol. 1984 Apr;74(4):928–933. doi: 10.1104/pp.74.4.928. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gatenby A. A., Ellis R. J. Chaperone function: the assembly of ribulose bisphosphate carboxylase-oxygenase. Annu Rev Cell Biol. 1990;6:125–149. doi: 10.1146/annurev.cb.06.110190.001013. [DOI] [PubMed] [Google Scholar]
- Goldin B. R., Little H. N. Metalloporphyrin chelatase from barley. Biochim Biophys Acta. 1969 Feb 11;171(2):321–332. doi: 10.1016/0005-2744(69)90165-x. [DOI] [PubMed] [Google Scholar]
- Gratecos D., Fischer E. H. Adenosine 5'-O(3-thiotriphosphate) in the control of phosphorylase activity. Biochem Biophys Res Commun. 1974 Jun 18;58(4):960–967. doi: 10.1016/s0006-291x(74)80237-8. [DOI] [PubMed] [Google Scholar]
- Götz F., Schleifer K. H. Biochemical properties and the physiological role of the fructose-1,6-bisphosphate activated L-lactate dehydrogenase from Staphylococcus epidermidis. Eur J Biochem. 1978 Oct 16;90(3):555–561. doi: 10.1111/j.1432-1033.1978.tb12635.x. [DOI] [PubMed] [Google Scholar]
- Jones O. T. Ferrochelatase of spinach chloroplasts. Biochem J. 1968 Mar;107(1):113–119. doi: 10.1042/bj1070113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Journet E. P., Douce R. Enzymic capacities of purified cauliflower bud plastids for lipid synthesis and carbohydrate metabolism. Plant Physiol. 1985 Oct;79(2):458–467. doi: 10.1104/pp.79.2.458. [DOI] [PMC free article] [PubMed] [Google Scholar]
- King L., Weber G. Conformational drift and cryoinactivation of lactate dehydrogenase. Biochemistry. 1986 Jun 17;25(12):3637–3640. doi: 10.1021/bi00360a024. [DOI] [PubMed] [Google Scholar]
- Little H. N., Jones O. T. The subcellular loclization and properties of the ferrochelatase of etiolated barley. Biochem J. 1976 May 15;156(2):309–314. doi: 10.1042/bj1560309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubin B. B., Rotstein O. D., Lukacs G., Bailey D., Romaschin A., Walker P. M. Decreased leukocyte adhesion with anti-CD18 monoclonal antibodies is mediated by receptor internalization. Surgery. 1992 Aug;112(2):263–269. [PubMed] [Google Scholar]
- Streusand V. J., Portis A. R. Rubisco Activase Mediates ATP-Dependent Activation of Ribulose Bisphosphate Carboxylase. Plant Physiol. 1987 Sep;85(1):152–154. doi: 10.1104/pp.85.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker C. J., Weinstein J. D. Further characterization of the magnesium chelatase in isolated developing cucumber chloroplasts : substrate specificity, regulation, intactness, and ATP requirements. Plant Physiol. 1991 Apr;95(4):1189–1196. doi: 10.1104/pp.95.4.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker C. J., Weinstein J. D. In vitro assay of the chlorophyll biosynthetic enzyme Mg-chelatase: resolution of the activity into soluble and membrane-bound fractions. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5789–5793. doi: 10.1073/pnas.88.13.5789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Z. Y., Portis A. R. Dissociation of ribulose-1,5-bisphosphate bound to ribulose-1,5-bisphosphate carboxylase/oxygenase and its enhancement by ribulose-1,5-bisphosphate carboxylase/oxygenase activase-mediated hydrolysis of ATP. Plant Physiol. 1992 Aug;99(4):1348–1353. doi: 10.1104/pp.99.4.1348. [DOI] [PMC free article] [PubMed] [Google Scholar]