Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Apr 1;299(Pt 1):285–290. doi: 10.1042/bj2990285

Characterization of the interaction of galactose-exposing particles with rat Kupffer cells.

J Kuiper 1, H F Bakkeren 1, E A Biessen 1, T J Van Berkel 1
PMCID: PMC1138052  PMID: 8166651

Abstract

The characteristics of the recognition system involved in the binding of galactose-exposing particles to freshly isolated rat Kupffer cells were determined. For this purpose we used iodinated lactosylated low-density lipoprotein (125I-Lac-LDL) as a ligand for the galactose receptor on Kupffer cells. The affinity of the binding of 125I-Lac-LDL to Kupffer cells was saturable (23,500 galactose-specific binding sites per cell) and of high affinity (2.4 +/- 0.3 nM). The order of potency of various carbohydrates in inhibiting the association of 125I-Lac-LDL with Kupffer cells was as follows: N-acetylgalactosamine > L-fucose >> N-acetylglucosamine/mannan. Association of 125I-Lac-LDL with Kupffer cells in the absence of Ca2+ was at the same level as in the presence of 50 mM N-acetylgalactosamine. A polyclonal antibody raised against the rat asialoglycoprotein receptor inhibited the binding of 125I-Lac-LDL to Kupffer cells and reacted in a Western blot with two proteins (molecular mass 88 and 77 kDa), which correspond to the molecular mass of the fucose receptor [Lehrman, Haltiwanger and Hill (1986) J. Biol. Chem. 261, 7426-7432]. Furthermore, the ability of fucosylated neoglycoproteins to displace 125I-Lac-LDL from Kupffer cells was equally dependent on the extent of fucosylation as previously reported for the fucose receptor. We conclude that the fucose receptor and not the C-reactive protein, as recently proposed [Kempka, Roos and Kolb-Bachofen (1990) J. Immunol. 144, 1004-1009], functions as the galactose-particle receptor on the Kupffer cell. The binding of galactose-exposing particles to the fucose receptor is a previously unknown property of this receptor.

Full text

PDF
285

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashwell G., Harford J. Carbohydrate-specific receptors of the liver. Annu Rev Biochem. 1982;51:531–554. doi: 10.1146/annurev.bi.51.070182.002531. [DOI] [PubMed] [Google Scholar]
  2. Biessen E. A., Bakkeren H. F., Beuting D. M., Kuiper J., Van Berkel T. J. Ligand size is a major determinant of high-affinity binding of fucose- and galactose-exposing (lipo)proteins by the hepatic fucose receptor. Biochem J. 1994 Apr 1;299(Pt 1):291–296. doi: 10.1042/bj2990291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Biessen E. A., Norder J. A., Horn A. S., Robillard G. T. Evidence for the existence of at least two different binding sites for 5HT-reuptake inhibitors within the 5HT-reuptake system from human platelets. Biochem Pharmacol. 1988 Oct 15;37(20):3959–3966. doi: 10.1016/0006-2952(88)90080-9. [DOI] [PubMed] [Google Scholar]
  4. Bijsterbosch M. K., Van Berkel T. J. Uptake of lactosylated low-density lipoprotein by galactose-specific receptors in rat liver. Biochem J. 1990 Aug 15;270(1):233–239. doi: 10.1042/bj2700233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bilheimer D. W., Eisenberg S., Levy R. I. The metabolism of very low density lipoprotein proteins. I. Preliminary in vitro and in vivo observations. Biochim Biophys Acta. 1972 Feb 21;260(2):212–221. doi: 10.1016/0005-2760(72)90034-3. [DOI] [PubMed] [Google Scholar]
  6. Breitfeld P. P., Simmons C. F., Jr, Strous G. J., Geuze H. J., Schwartz A. L. Cell biology of the asialoglycoprotein receptor system: a model of receptor-mediated endocytosis. Int Rev Cytol. 1985;97:47–95. doi: 10.1016/s0074-7696(08)62348-7. [DOI] [PubMed] [Google Scholar]
  7. Casteleijn E., van Rooij H. C., van Berkel T. J., Koster J. F. Mechanism of glucagon stimulation of fructose-1,6-bisphosphatase in rat hepatocytes. Involvement of a low-Mr activator. FEBS Lett. 1986 Jun 9;201(2):193–197. doi: 10.1016/0014-5793(86)80607-x. [DOI] [PubMed] [Google Scholar]
  8. Haltiwanger R. S., Hill R. L. The isolation of a rat alveolar macrophage lectin. J Biol Chem. 1986 Jun 5;261(16):7440–7444. [PubMed] [Google Scholar]
  9. Haltiwanger R. S., Lehrman M. A., Eckhardt A. E., Hill R. L. The distribution and localization of the fucose-binding lectin in rat tissues and the identification of a high affinity form of the mannose/N-acetylglucosamine-binding lectin in rat liver. J Biol Chem. 1986 Jun 5;261(16):7433–7439. [PubMed] [Google Scholar]
  10. Hoyle G. W., Hill R. L. Molecular cloning and sequencing of a cDNA for a carbohydrate binding receptor unique to rat Kupffer cells. J Biol Chem. 1988 Jun 5;263(16):7487–7492. [PubMed] [Google Scholar]
  11. Hoyle G. W., Hill R. L. Structure of the gene for a carbohydrate-binding receptor unique to rat kupffer cells. J Biol Chem. 1991 Jan 25;266(3):1850–1857. [PubMed] [Google Scholar]
  12. Hubbard A. L., Wilson G., Ashwell G., Stukenbrok H. An electron microscope autoradiographic study of the carbohydrate recognition systems in rat liver. I. Distribution of 125I-ligands among the liver cell types. J Cell Biol. 1979 Oct;83(1):47–64. doi: 10.1083/jcb.83.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ii M., Kurata H., Itoh N., Yamashina I., Kawasaki T. Molecular cloning and sequence analysis of cDNA encoding the macrophage lectin specific for galactose and N-acetylgalactosamine. J Biol Chem. 1990 Jul 5;265(19):11295–11298. [PubMed] [Google Scholar]
  14. Jansen R. W., Molema G., Ching T. L., Oosting R., Harms G., Moolenaar F., Hardonk M. J., Meijer D. K. Hepatic endocytosis of various types of mannose-terminated albumins. What is important, sugar recognition, net charge, or the combination of these features. J Biol Chem. 1991 Feb 15;266(5):3343–3348. [PubMed] [Google Scholar]
  15. Kempka G., Kolb-Bachofen V. Galactose-specific receptors on liver cells. I. Hepatocyte and liver macrophage receptors differ in their membrane anchorage. Biochim Biophys Acta. 1985 Oct 30;847(1):108–114. doi: 10.1016/0167-4889(85)90160-0. [DOI] [PubMed] [Google Scholar]
  16. Kempka G., Roos P. H., Kolb-Bachofen V. A membrane-associated form of C-reactive protein is the galactose-specific particle receptor on rat liver macrophages. J Immunol. 1990 Feb 1;144(3):1004–1009. [PubMed] [Google Scholar]
  17. Kolb-Bachofen V. A membrane-bound form of the acute-phase protein C-reactive protein is the galactose-specific particle receptor on rat liver macrophages. Pathobiology. 1991;59(4):272–275. doi: 10.1159/000163661. [DOI] [PubMed] [Google Scholar]
  18. Kolb-Bachofen V., Abel F. Participation of D-galactose-specific receptors of liver macrophages in recognition of fibronectin-opsonized particles. Carbohydr Res. 1991 Jun 25;213:201–213. doi: 10.1016/s0008-6215(00)90609-8. [DOI] [PubMed] [Google Scholar]
  19. Kolb-Bachofen V., Schlepper-Schäfer J., Vogell W., Kolb H. Electron microscopic evidence for an asialoglycoprotein receptor on Kupffer cells: localization of lectin-mediated endocytosis. Cell. 1982 Jul;29(3):859–866. doi: 10.1016/0092-8674(82)90447-0. [DOI] [PubMed] [Google Scholar]
  20. Kuiper J., Rijken D. C., de Munk G. A., van Berkel T. J. In vivo and in vitro interaction of high and low molecular weight single-chain urokinase-type plasminogen activator with rat liver cells. J Biol Chem. 1992 Jan 25;267(3):1589–1595. [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Lee R. T., Lee Y. C. Affinity labeling of the galactose/N-acetylgalactosamine-specific receptor of rat hepatocytes: preferential labeling of one of the subunits. Biochemistry. 1987 Oct 6;26(20):6320–6329. doi: 10.1021/bi00394a005. [DOI] [PubMed] [Google Scholar]
  24. Lehrman M. A., Haltiwanger R. S., Hill R. L. The binding of fucose-containing glycoproteins by hepatic lectins. The binding specificity of the rat liver fucose lectin. J Biol Chem. 1986 Jun 5;261(16):7426–7432. [PubMed] [Google Scholar]
  25. Lehrman M. A., Hill R. L. The binding of fucose-containing glycoproteins by hepatic lectins. Purification of a fucose-binding lectin from rat liver. J Biol Chem. 1986 Jun 5;261(16):7419–7425. [PubMed] [Google Scholar]
  26. Lehrman M. A., Pizzo S. V., Imber M. J., Hill R. L. The binding of fucose-containing glycoproteins by hepatic lectins. Re-examination of the clearance from blood and the binding to membrane receptors and pure lectins. J Biol Chem. 1986 Jun 5;261(16):7412–7418. [PubMed] [Google Scholar]
  27. Praaning-van Dalen D. P., de Leeuw A. M., Brouwer A., Knook D. L. Rat liver endothelial cells have a greater capacity than Kupffer cells to endocytose N-acetylglucosamine- and mannose-terminated glycoproteins. Hepatology. 1987 Jul-Aug;7(4):672–679. doi: 10.1002/hep.1840070410. [DOI] [PubMed] [Google Scholar]
  28. Redgrave T. G., Roberts D. C., West C. E. Separation of plasma lipoproteins by density-gradient ultracentrifugation. Anal Biochem. 1975 May 12;65(1-2):42–49. doi: 10.1016/0003-2697(75)90488-1. [DOI] [PubMed] [Google Scholar]
  29. Reith M. E., Sershen H., Lajtha A. Thermodynamics of the interactions of tricyclic drugs with binding sites for [3H]imipramine in mouse cerebral cortex. Biochem Pharmacol. 1984 Dec 15;33(24):4101–4104. doi: 10.1016/0006-2952(84)90030-3. [DOI] [PubMed] [Google Scholar]
  30. Roos P. H., Hartman H. J., Schlepper-Schäfer J., Kolb H., Kolb-Bachofen V. Galactose-specific receptors on liver cells. II. Characterization of the purified receptor from macrophages reveals no structural relationship to the hepatocyte receptor. Biochim Biophys Acta. 1985 Oct 30;847(1):115–121. doi: 10.1016/0167-4889(85)90161-2. [DOI] [PubMed] [Google Scholar]
  31. Schlepper-Schäfer J., Hülsmann D., Djovkar A., Meyer H. E., Herbertz L., Kolb H., Kolb-Bachofen V. Endocytosis via galactose receptors in vivo. Ligand size directs uptake by hepatocytes and/or liver macrophages. Exp Cell Res. 1986 Aug;165(2):494–506. doi: 10.1016/0014-4827(86)90602-6. [DOI] [PubMed] [Google Scholar]
  32. Schlepper-Schäfer J., Springer G. F. Carcinoma autoantigens T and Tn and their cleavage products interact with Gal/GalNAc-specific receptors on rat Kupffer cells and hepatocytes. Biochim Biophys Acta. 1989 Oct 9;1013(3):266–272. doi: 10.1016/0167-4889(89)90145-6. [DOI] [PubMed] [Google Scholar]
  33. Seglen P. O. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83. doi: 10.1016/s0091-679x(08)61797-5. [DOI] [PubMed] [Google Scholar]
  34. Segonzac A., Schoemaker H., Langer S. Z. Temperature dependence of drug interaction with the platelet 5-hydroxytryptamine transporter: a clue to the imipramine selectivity paradox. J Neurochem. 1987 Feb;48(2):331–339. doi: 10.1111/j.1471-4159.1987.tb04098.x. [DOI] [PubMed] [Google Scholar]
  35. Shia M. A., Lodish H. F. The two subunits of the human asialoglycoprotein receptor have different fates when expressed alone in fibroblasts. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1158–1162. doi: 10.1073/pnas.86.4.1158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Spiess M., Schwartz A. L., Lodish H. F. Sequence of human asialoglycoprotein receptor cDNA. An internal signal sequence for membrane insertion. J Biol Chem. 1985 Feb 25;260(4):1979–1982. [PubMed] [Google Scholar]
  37. Whitehead P. H., Sammons H. G. A simple technique for the isolation of orosomucoid from normal and pathological sera. Biochim Biophys Acta. 1966 Jul 27;124(1):209–211. doi: 10.1016/0304-4165(66)90336-9. [DOI] [PubMed] [Google Scholar]
  38. van Berkel T. J., Kruijt J. K., Spanjer H. H., Nagelkerke J. F., Harkes L., Kempen H. J. The effect of a water-soluble tris-galactoside-terminated cholesterol derivative on the fate of low density lipoproteins and liposomes. J Biol Chem. 1985 Mar 10;260(5):2694–2699. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES