Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 May 1;299(Pt 3):679–682. doi: 10.1042/bj2990679

Rat liver mitochondrial ADP-ribose pyrophosphatase in the matrix space with low Km for free ADP-ribose.

D Bernet 1, R M Pinto 1, M J Costas 1, J Canales 1, J C Cameselle 1
PMCID: PMC1138074  PMID: 8192656

Abstract

A study involving markers of subcellular and submitochondrial fractions, gradient centrifugation, latency measurements and extraction with digitonin, demonstrates the association of a specific ADP-ribose pyrophosphatase with rat liver mitochondria and its localization in the matrix space. The enzyme hydrolyses ADP-ribose to AMP, with a Km of 2-3 microM. The results support the occurrence of a specific turnover pathway for free ADP-ribose and its relevance in mitochondria.

Full text

PDF
679

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bischoff E., Tran-Thi T. A., Decker K. F. Nucleotide pyrophosphatase of rat liver. A comparative study on the enzymes solubilized and purified from plasma membrane and endoplasmic reticulum. Eur J Biochem. 1975 Feb 21;51(2):353–361. doi: 10.1111/j.1432-1033.1975.tb03935.x. [DOI] [PubMed] [Google Scholar]
  2. Boyer C. S., Moore G. A., Moldéus P. Submitochondrial localization of the NAD+ glycohydrolase. Implications for the role of pyridine nucleotide hydrolysis in mitochondrial calcium fluxes. J Biol Chem. 1993 Feb 25;268(6):4016–4020. [PubMed] [Google Scholar]
  3. Cameselle J. C., Costas M. J., Günther Sillero M. A., Sillero A. Two low Km hydrolytic activities on dinucleoside 5',5"'-P1,P4-tetraphosphates in rat liver. Characterization as the specific dinucleoside tetraphosphatase and a phosphodiesterase I-like enzyme. J Biol Chem. 1984 Mar 10;259(5):2879–2885. [PubMed] [Google Scholar]
  4. Costas M. J., Cameselle J. C., Sillero A. Mitochondrial location of rat liver dinucleoside triphosphatase. J Biol Chem. 1986 Feb 15;261(5):2064–2067. [PubMed] [Google Scholar]
  5. Desmarais Y., Ménard L., Lagueux J., Poirier G. G. Enzymological properties of poly(ADP-ribose)polymerase: characterization of automodification sites and NADase activity. Biochim Biophys Acta. 1991 Jun 24;1078(2):179–186. doi: 10.1016/0167-4838(91)99007-f. [DOI] [PubMed] [Google Scholar]
  6. Fleischer S., Kervina M. Subcellular fractionation of rat liver. Methods Enzymol. 1974;31:6–41. doi: 10.1016/0076-6879(74)31005-1. [DOI] [PubMed] [Google Scholar]
  7. Frei B., Richter C. Mono(ADP-ribosylation) in rat liver mitochondria. Biochemistry. 1988 Jan 26;27(2):529–535. doi: 10.1021/bi00402a004. [DOI] [PubMed] [Google Scholar]
  8. Galione A. Ca(2+)-induced Ca2+ release and its modulation by cyclic ADP-ribose. Trends Pharmacol Sci. 1992 Aug;13(8):304–306. doi: 10.1016/0165-6147(92)90096-o. [DOI] [PubMed] [Google Scholar]
  9. Guida L., Zocchi E., Franco L., Benatti U., De Flora A. Presence and turnover of adenosine diphosphate ribose in human erythrocytes. Biochem Biophys Res Commun. 1992 Oct 15;188(1):402–408. doi: 10.1016/0006-291x(92)92399-i. [DOI] [PubMed] [Google Scholar]
  10. Hilz H., Koch R., Fanick W., Klapproth K., Adamietz P. Nonenzymic ADP-ribosylation of specific mitochondrial polypeptides. Proc Natl Acad Sci U S A. 1984 Jul;81(13):3929–3933. doi: 10.1073/pnas.81.13.3929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kawaichi M., Ueda K., Hayaishi O. Multiple autopoly(ADP-ribosyl)ation of rat liver poly(ADP-ribose) synthetase. Mode of modification and properties of automodified synthetase. J Biol Chem. 1981 Sep 25;256(18):9483–9489. [PubMed] [Google Scholar]
  12. Kim H., Jacobson E. L., Jacobson M. K. Synthesis and degradation of cyclic ADP-ribose by NAD glycohydrolases. Science. 1993 Sep 3;261(5126):1330–1333. doi: 10.1126/science.8395705. [DOI] [PubMed] [Google Scholar]
  13. Kirsten E., Bauer P. I., Kun E. Cellular regulation of ADP-ribosylation of proteins. IV. Conversion of poly(ADP-ribose) polymerase activity to NAD-glycohydrolase during retinoic acid-induced differentiation of HL60 cells. Exp Cell Res. 1991 May;194(1):1–8. doi: 10.1016/0014-4827(91)90122-b. [DOI] [PubMed] [Google Scholar]
  14. Kun E., Chang A. C., Sharma M. L., Ferro A. M., Nitecki D. Covalent modification of proteins by metabolites of NAD+. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3131–3135. doi: 10.1073/pnas.73.9.3131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kun E., Zimber P. H., Chang A. C., Puschendorf B., Grunicke H. Macromolecular enzymatic product of NAD+ in liver mitochondria. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1436–1440. doi: 10.1073/pnas.72.4.1436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lötscher H. R., Winterhalter K. H., Carafoli E., Richter C. Hydroperoxide-induced loss of pyridine nucleotides and release of calcium from rat liver mitochondria. J Biol Chem. 1980 Oct 10;255(19):9325–9330. [PubMed] [Google Scholar]
  17. Maruta H., Inageda K., Aoki T., Nishina H., Tanuma S. Characterization of two forms of poly(ADP-ribose) glycohydrolase in guinea pig liver. Biochemistry. 1991 Jun 18;30(24):5907–5912. doi: 10.1021/bi00238a014. [DOI] [PubMed] [Google Scholar]
  18. Masmoudi A., Mandel P. ADP-ribosyl transferase and NAD glycohydrolase activities in rat liver mitochondria. Biochemistry. 1987 Apr 7;26(7):1965–1969. doi: 10.1021/bi00381a027. [DOI] [PubMed] [Google Scholar]
  19. Matlib M. A., O'Brien P. J. Compartmentation of enzymes in the rat liver mitochondrial matrix. Arch Biochem Biophys. 1975 Mar;167(1):193–202. doi: 10.1016/0003-9861(75)90456-7. [DOI] [PubMed] [Google Scholar]
  20. Miró A., Costas M. J., García-Díaz M., Hernández M. T., Cameselle J. C. A specific, low Km ADP-ribose pyrophosphatase from rat liver. FEBS Lett. 1989 Feb 13;244(1):123–126. doi: 10.1016/0014-5793(89)81176-7. [DOI] [PubMed] [Google Scholar]
  21. Miró A., Hernández M. T., Costas M. J., Cameselle J. C. Enzyme saturation and inhibition kinetics studied from multiple progress curves recorded spectrophotometrically from single reaction mixtures for ADP-ribose pyrophosphatase. J Biochem Biophys Methods. 1991 Feb-Mar;22(2):177–184. doi: 10.1016/0165-022x(91)90031-q. [DOI] [PubMed] [Google Scholar]
  22. Miwa M., Sugimura T. Splitting of the ribose-ribose linkage of poly(adenosine diphosphate-robose) by a calf thymus extract. J Biol Chem. 1971 Oct 25;246(20):6362–6364. [PubMed] [Google Scholar]
  23. Parry D. M., Pedersen P. L. Intracellular localization and properties of particulate hexokinase in the Novikoff ascites tumor. Evidence for an outer mitochondrial membrane location. J Biol Chem. 1983 Sep 25;258(18):10904–10912. [PubMed] [Google Scholar]
  24. Richter C., Schlegel J., Schweizer M. Prooxidant-induced Ca2+ release from liver mitochondria. Specific versus nonspecific pathways. Ann N Y Acad Sci. 1992 Nov 21;663:262–268. doi: 10.1111/j.1749-6632.1992.tb38669.x. [DOI] [PubMed] [Google Scholar]
  25. Schnaitman C., Erwin V. G., Greenawalt J. W. The submitochondrial localization of monoamine oxidase. An enzymatic marker for the outer membrane of rat liver mitochondria. J Cell Biol. 1967 Mar;32(3):719–735. doi: 10.1083/jcb.32.3.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tanuma S., Endo H. Identification in human erythrocytes of mono(ADP-ribosyl) protein hydrolase that cleaves a mono(ADP-ribosyl) Gi linkage. FEBS Lett. 1990 Feb 26;261(2):381–384. doi: 10.1016/0014-5793(90)80597-c. [DOI] [PubMed] [Google Scholar]
  27. Tanuma S., Endo H. Purification and characterization of an (ADP-ribose)n glycohydrolase from human erythrocytes. Eur J Biochem. 1990 Jul 20;191(1):57–63. doi: 10.1111/j.1432-1033.1990.tb19093.x. [DOI] [PubMed] [Google Scholar]
  28. Ueda K., Oka J., Naruniya S., Miyakawa N., Hayaishi O. Poly ADP-ribose glycohydrolase from rat liver nuclei, a novel enzyme degrading the polymer. Biochem Biophys Res Commun. 1972 Jan 31;46(2):516–523. doi: 10.1016/s0006-291x(72)80169-4. [DOI] [PubMed] [Google Scholar]
  29. Weis M., Kass G. E., Orrenius S., Moldéus P. N-acetyl-p-benzoquinone imine induces Ca2+ release from mitochondria by stimulating pyridine nucleotide hydrolysis. J Biol Chem. 1992 Jan 15;267(2):804–809. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES