Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 May 1;299(Pt 3):695–700. doi: 10.1042/bj2990695

Blue shifts in bacteriochlorophyll absorbance correlate with changed hydrogen bonding patterns in light-harvesting 2 mutants of Rhodobacter sphaeroides with alterations at alpha-Tyr-44 and alpha-Tyr-45.

G J Fowler 1, G D Sockalingum 1, B Robert 1, C N Hunter 1
PMCID: PMC1138076  PMID: 8192657

Abstract

A combination of Fourier-Transform (FT) resonance Raman spectroscopy and site-directed mutagenesis has been used to examine the function of two highly conserved aromatic residues, alpha-Tyr-44 and alpha-Tyr-45, in the light-harvesting 2 (LH2) complex of the photosynthetic bacterium Rhodobacter sphaeroides. In LH2 complexes, aromatic residues located at positions alpha-44 and alpha-45 are thought to be located near the putative binding site for bacteriochlorophyll, and alterations at these positions are known to produce blue shifts in bacteriochlorophyll absorbance. In the present work, mutant LH2 complexes carrying the alterations alpha-Tyr-44-->Phe, alpha-Tyr-45-->Phe and alpha-Tyr-44,-45-->Phe,Leu were examined. FT resonance Raman spectroscopy of the resulting complexes shows the breakage of a hydrogen bond to the 2-acetyl carbonyl group of one of the B850 bacteriochlorophylls in the LH2 complex; in the double mutant, breakage of a second bond is probable. These results suggest that one of these hydrogen bonds is to alpha-Tyr-44, placing this residue in close proximity to ring I of one of the B850 bacteriochlorophyll a pigments. The breakage of one, then two, 2-acetyl carbonyl hydrogen bonds correlates well with the shift in the absorbance of the B850 pigments of 11 nm then 26 nm at 77 K. Thus a consistency between literature theoretical calculations and the observations from both absorption and FT resonance Raman spectroscopy is demonstrated.

Full text

PDF
695

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. P., Feher G., Yeates T. O., Komiya H., Rees D. C. Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5730–5734. doi: 10.1073/pnas.84.16.5730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Broglie R. M., Hunter C. N., Delepelaire P., Niederman R. A., Chua N. H., Clayton R. K. Isolation and characterization of the pigment-protein complexes of Rhodopseudomonas sphaeroides by lithium dodecyl sulfate/polyacrylamide gel electrophoresis. Proc Natl Acad Sci U S A. 1980 Jan;77(1):87–91. doi: 10.1073/pnas.77.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brunisholz R. A., Zuber H. Structure, function and organization of antenna polypeptides and antenna complexes from the three families of Rhodospirillaneae. J Photochem Photobiol B. 1992 Aug 14;15(1-2):113–140. doi: 10.1016/1011-1344(92)87010-7. [DOI] [PubMed] [Google Scholar]
  4. Fowler G. J., Visschers R. W., Grief G. G., van Grondelle R., Hunter C. N. Genetically modified photosynthetic antenna complexes with blueshifted absorbance bands. Nature. 1992 Feb 27;355(6363):848–850. doi: 10.1038/355848a0. [DOI] [PubMed] [Google Scholar]
  5. Germeroth L., Lottspeich F., Robert B., Michel H. Unexpected similarities of the B800-850 light-harvesting complex from Rhodospirillum molischianum to the B870 light-harvesting complexes from other purple photosynthetic bacteria. Biochemistry. 1993 Jun 1;32(21):5615–5621. doi: 10.1021/bi00072a017. [DOI] [PubMed] [Google Scholar]
  6. Hunter C. N., Fowler G. J., Grief G. G., Olsen J. D., Jones M. R. Protein engineering of bacterial light-harvesting complexes. Biochem Soc Trans. 1993 Feb;21(1):41–43. doi: 10.1042/bst0210041. [DOI] [PubMed] [Google Scholar]
  7. Jones M. R., Fowler G. J., Gibson L. C., Grief G. G., Olsen J. D., Crielaard W., Hunter C. N. Mutants of Rhodobacter sphaeroides lacking one or more pigment-protein complexes and complementation with reaction-centre, LH1, and LH2 genes. Mol Microbiol. 1992 May;6(9):1173–1184. doi: 10.1111/j.1365-2958.1992.tb01556.x. [DOI] [PubMed] [Google Scholar]
  8. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mattioli T. A., Hoffmann A., Robert B., Schrader B., Lutz M. Primary donor structure and interactions in bacterial reaction centers from near-infrared Fourier transform resonance Raman spectroscopy. Biochemistry. 1991 May 14;30(19):4648–4654. doi: 10.1021/bi00233a002. [DOI] [PubMed] [Google Scholar]
  10. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Wachtveitl J., Farchaus J. W., Das R., Lutz M., Robert B., Mattioli T. A. Structure, spectroscopic, and redox properties of Rhodobacter sphaeroides reaction centers bearing point mutations near the primary electron donor. Biochemistry. 1993 Nov 30;32(47):12875–12886. doi: 10.1021/bi00210a041. [DOI] [PubMed] [Google Scholar]
  12. el-Kabbani O., Chang C. H., Tiede D., Norris J., Schiffer M. Comparison of reaction centers from Rhodobacter sphaeroides and Rhodopseudomonas viridis: overall architecture and protein-pigment interactions. Biochemistry. 1991 Jun 4;30(22):5361–5369. doi: 10.1021/bi00236a006. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES