Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 May 1;299(Pt 3):735–739. doi: 10.1042/bj2990735

Inhibition of hepatic gluconeogenesis by nitric oxide: a comparison with endotoxic shock.

R A Horton 1, E D Ceppi 1, R G Knowles 1, M A Titheradge 1
PMCID: PMC1138082  PMID: 8192661

Abstract

Isolated hepatocytes incubated in the presence of the NO donors S-nitroso-N-acetylpenicillamine (SNAP) and 3-morpholino-sydnonimine (SIN-1) displayed a time- and dose-dependent inhibition of glucose synthesis from lactate plus pyruvate as the substrate which correlated with NO production, but not nitrite production. Neither the parent compound of SNAP, N-acetyl-DL-penicillamine (NAP), nor nitrite or nitrate had any significant effect on glucose output, indicating that the inhibition was due to the generation of NO within the incubation medium. The concentrations of NO required for this effect (< 800 nM) are within the range reported to occur in intact tissues and in vivo. The magnitude of the inhibitory effect of SNAP (approximately 50%) was comparable with that of endotoxin treatment of the rat with lactate plus pyruvate as the substrate. When the effect of SNAP on glucose synthesis and lactate plus pyruvate synthesis from a number of different substrates was examined, this showed a pattern comparable with that observed after endotoxin treatment of the rat, suggesting that NO may be the inhibitory mediator of the effects of bacterial endotoxin on hepatic gluconeogenesis. The NO donor had no effect on the flux through 6-phosphofructo-1-kinase, supporting the concept that the primary site of inhibition of gluconeogenesis by both NO and endotoxin resides at the level of phosphoenolpyruvate formation.

Full text

PDF
735

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Billiar T. R., Curran R. D., Ferrari F. K., Williams D. L., Simmons R. L. Kupffer cell:hepatocyte cocultures release nitric oxide in response to bacterial endotoxin. J Surg Res. 1990 Apr;48(4):349–353. doi: 10.1016/0022-4804(90)90073-b. [DOI] [PubMed] [Google Scholar]
  2. Billiar T. R., Curran R. D., West M. A., Hofmann K., Simmons R. L. Kupffer cell cytotoxicity to hepatocytes in coculture requires L-arginine. Arch Surg. 1989 Dec;124(12):1416–1421. doi: 10.1001/archsurg.1989.01410120062013. [DOI] [PubMed] [Google Scholar]
  3. Casteleijn E., Kuiper J., Van Rooij H. C., Kamps J. A., Koster J. F., Van Berkel T. J. Endotoxin stimulates glycogenolysis in the liver by means of intercellular communication. J Biol Chem. 1988 May 25;263(15):6953–6955. [PubMed] [Google Scholar]
  4. Casteleijn E., Kuiper J., van Rooij H. C., Kamps J. A., Koster J. F., van Berkel T. J. Hormonal control of glycogenolysis in parenchymal liver cells by Kupffer and endothelial liver cells. J Biol Chem. 1988 Feb 25;263(6):2699–2703. [PubMed] [Google Scholar]
  5. Ceppi E. D., Knowles R. G., Carpenter K. M., Titheradge M. A. Effect of treatment in vivo of rats with bacterial endotoxin on fructose 2,6-bisphosphate metabolism and L-pyruvate kinase activity and flux in isolated liver cells. Biochem J. 1992 Jun 15;284(Pt 3):761–766. doi: 10.1042/bj2840761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Curran R. D., Billiar T. R., Stuehr D. J., Ochoa J. B., Harbrecht B. G., Flint S. G., Simmons R. L. Multiple cytokines are required to induce hepatocyte nitric oxide production and inhibit total protein synthesis. Ann Surg. 1990 Oct;212(4):462–471. doi: 10.1097/00000658-199010000-00009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Filkins J. P., Buchanan B. J. In vivo vs in vitro effects of endotoxin on glycogenolysis, gluconeogenesis, and glucose utlization. Proc Soc Exp Biol Med. 1977 Jun;155(2):216–218. doi: 10.3181/00379727-155-39776. [DOI] [PubMed] [Google Scholar]
  8. Filkins J. P., Cornell R. P. Depression of hepatic gluconeogenesis and the hypoglycemia of endotoxin shock. Am J Physiol. 1974 Oct;227(4):778–781. doi: 10.1152/ajplegacy.1974.227.4.778. [DOI] [PubMed] [Google Scholar]
  9. Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
  10. Huie R. E., Padmaja S. The reaction of no with superoxide. Free Radic Res Commun. 1993;18(4):195–199. doi: 10.3109/10715769309145868. [DOI] [PubMed] [Google Scholar]
  11. Jones C. G., Titheradge M. A. The effect of treatment of the rat with bacterial endotoxin on gluconeogenesis and pyruvate metabolism in subsequently isolated hepatocytes. Biochem J. 1993 Jan 1;289(Pt 1):169–172. doi: 10.1042/bj2890169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Knowles R. G., McCabe J. P., Beevers S. J., Pogson C. I. The characteristics and site of inhibition of gluconeogenesis in rat liver cells by bacterial endotoxin. Stimulation of phosphofructokinase-1. Biochem J. 1987 Mar 15;242(3):721–728. doi: 10.1042/bj2420721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Knowles R. G., Merrett M., Salter M., Moncada S. Differential induction of brain, lung and liver nitric oxide synthase by endotoxin in the rat. Biochem J. 1990 Sep 15;270(3):833–836. doi: 10.1042/bj2700833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Knowles R. G., Salter M., Brooks S. L., Moncada S. Anti-inflammatory glucocorticoids inhibit the induction by endotoxin of nitric oxide synthase in the lung, liver and aorta of the rat. Biochem Biophys Res Commun. 1990 Nov 15;172(3):1042–1048. doi: 10.1016/0006-291x(90)91551-3. [DOI] [PubMed] [Google Scholar]
  15. Kuiper J., Casteleyn E., van Berkel T. J. The role of prostaglandins in endotoxin stimulated glycogenolysis in the liver. Agents Actions. 1989 Jan;26(1-2):201–202. doi: 10.1007/BF02126609. [DOI] [PubMed] [Google Scholar]
  16. LaNoue K. F., Mason A. D., Jr, Daniels J. P. The impairment of glucogenesis by gram negative infection. Metabolism. 1968 Jul;17(7):606–611. doi: 10.1016/0026-0495(68)90019-x. [DOI] [PubMed] [Google Scholar]
  17. Malinski T., Bailey F., Zhang Z. G., Chopp M. Nitric oxide measured by a porphyrinic microsensor in rat brain after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab. 1993 May;13(3):355–358. doi: 10.1038/jcbfm.1993.48. [DOI] [PubMed] [Google Scholar]
  18. Malinski T., Radomski M. W., Taha Z., Moncada S. Direct electrochemical measurement of nitric oxide released from human platelets. Biochem Biophys Res Commun. 1993 Jul 30;194(2):960–965. doi: 10.1006/bbrc.1993.1914. [DOI] [PubMed] [Google Scholar]
  19. Malinski T., Taha Z., Grunfeld S., Patton S., Kapturczak M., Tomboulian P. Diffusion of nitric oxide in the aorta wall monitored in situ by porphyrinic microsensors. Biochem Biophys Res Commun. 1993 Jun 30;193(3):1076–1082. doi: 10.1006/bbrc.1993.1735. [DOI] [PubMed] [Google Scholar]
  20. Mela L. M., Miller L. D., Bacalzo L. V., Jr, Olofsson K., White R. R., 4th Alterations of mitochondrial structure and energy-linked functions in hemorrhagic shock and endotoxemia. Adv Exp Med Biol. 1972;33(0):231–242. doi: 10.1007/978-1-4684-3228-2_24. [DOI] [PubMed] [Google Scholar]
  21. Mela L., Bacalzo L. V., Jr, Miller L. D. Defective oxidative metabolism of rat liver mitochondria in hemorrhagic and endotoxin shock. Am J Physiol. 1971 Feb;220(2):571–577. doi: 10.1152/ajplegacy.1971.220.2.571. [DOI] [PubMed] [Google Scholar]
  22. Miller B. C., Ishikawa E., Uyeda K., Cottam G. L. Endotoxin increases the liver fructose 2,6-bisphosphate concentration in fasted rats. Biochem Biophys Res Commun. 1989 Dec 29;165(3):1072–1078. doi: 10.1016/0006-291x(89)92711-3. [DOI] [PubMed] [Google Scholar]
  23. Miller B. C., Uyeda K., Cottam G. L. Endotoxin stimulation of liver parenchymal cell phosphofructokinase activity requires nonparenchymal cells. Eur J Biochem. 1992 Feb 1;203(3):593–598. doi: 10.1111/j.1432-1033.1992.tb16588.x. [DOI] [PubMed] [Google Scholar]
  24. Pilkis S. J., Riou J. P., Claus T. H. Hormonal control of [14C]glucose synthesis from [U-14C]dihydroxyacetone and glycerol in isolated rat hepatocytes. J Biol Chem. 1976 Dec 25;251(24):7841–7852. [PubMed] [Google Scholar]
  25. Pryor H. J., Smyth J. E., Quinlan P. T., Halestrap A. P. Evidence that the flux control coefficient of the respiratory chain is high during gluconeogenesis from lactate in hepatocytes from starved rats. Implications for the hormonal control of gluconeogenesis and action of hypoglycaemic agents. Biochem J. 1987 Oct 15;247(2):449–457. doi: 10.1042/bj2470449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rhodes R. S. Impaired mitochondrial function and gluconeogenesis in late shock. J Surg Res. 1981 Apr;30(4):325–330. doi: 10.1016/0022-4804(81)90166-9. [DOI] [PubMed] [Google Scholar]
  27. Rognstad R. Cyclic AMP induced inhibition of pyruvate kinase flux in the intact liver cell. Biochem Biophys Res Commun. 1975 Apr 21;63(4):900–905. doi: 10.1016/0006-291x(75)90653-1. [DOI] [PubMed] [Google Scholar]
  28. Sayeed M. M., Baue A. E. Mitochondrial metabolism of succinate, beta-hydroxybutyrate, and alpha-ketoglutarate in hemorrhagic shock. Am J Physiol. 1971 May;220(5):1275–1281. doi: 10.1152/ajplegacy.1971.220.5.1275. [DOI] [PubMed] [Google Scholar]
  29. Snyder I. S., Deters M., Ingle J. Effect of endotoxin on pyruvate kinase activity in mouse liver. Infect Immun. 1971 Aug;4(2):138–142. doi: 10.1128/iai.4.2.138-142.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Snyder I. S. Enzyme activities of the livers of mice infected with Salmonella typhimurium. Infect Immun. 1971 Oct;4(4):411–415. doi: 10.1128/iai.4.4.411-415.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Southam E., Garthwaite J. Comparative effects of some nitric oxide donors on cyclic GMP levels in rat cerebellar slices. Neurosci Lett. 1991 Sep 2;130(1):107–111. doi: 10.1016/0304-3940(91)90239-p. [DOI] [PubMed] [Google Scholar]
  32. Stadler J., Billiar T. R., Curran R. D., Stuehr D. J., Ochoa J. B., Simmons R. L. Effect of exogenous and endogenous nitric oxide on mitochondrial respiration of rat hepatocytes. Am J Physiol. 1991 May;260(5 Pt 1):C910–C916. doi: 10.1152/ajpcell.1991.260.5.C910. [DOI] [PubMed] [Google Scholar]
  33. Tsukahara H., Gordienko D. V., Goligorsky M. S. Continuous monitoring of nitric oxide release from human umbilical vein endothelial cells. Biochem Biophys Res Commun. 1993 Jun 15;193(2):722–729. doi: 10.1006/bbrc.1993.1685. [DOI] [PubMed] [Google Scholar]
  34. West M. A., Billiar T. R., Mazuski J. E., Curran R. J., Cerra F. B., Simmons R. L. Endotoxin modulation of hepatocyte secretory and cellular protein synthesis is mediated by Kupffer cells. Arch Surg. 1988 Nov;123(11):1400–1405. doi: 10.1001/archsurg.1988.01400350114018. [DOI] [PubMed] [Google Scholar]
  35. Williamson J. R., Refino C., LaNoue K. Effects of E. coli lipopolysaccharide B treatment of rats on gluconeogenesis. In: Energy metabolism in trauma. Ciba Found Symp. 1970:145–154. doi: 10.1002/9780470719770.ch8. [DOI] [PubMed] [Google Scholar]
  36. Wolfe R. R., Elahi D., Spitzer J. J. Glucose and lactate kinetics after endotoxin administration in dogs. Am J Physiol. 1977 Feb;232(2):E180–E185. doi: 10.1152/ajpendo.1977.232.2.E180. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES