Abstract
Tyr99 phosphorylation of calmodulin appears to induce a distinct conformational change as is evident from the profound attenuation of the Ca(2+)-induced enhancement of calmodulin's mobility seen during SDS/PAGE. The effect of this conformational change appears to be localized, in that both calmodulin and P-Tyr99-calmodulin show identical dose-dependent activation profiles for stimulation of a physiological effector, type-I (Ca2+/calmodulin-stimulated) cyclic nucleotide phosphodiesterase (PDE) activity and their presence engenders similar dose-dependent PDE activation by Ca2+. In marked contrast with this, with P-Tyr99-calmodulin there were 3-4-fold increases in the IC50 values for inhibition of type-I PDE activity by the calmodulin antagonists TFP and W7, together with increased values for Hill coefficients for inhibition. The polybasic compound poly(L-lysine) potently augmented the action of calmodulin as a PDE activator, causing an approx. 7-fold decrease in the EC50 value for activation of PDE. It is suggested (i) that the Tyr99 phosphorylation of calmodulin, which occurs within a high-affinity Ca(2+)-binding domain, induces a localized conformational change in this peptide which can selectively attenuate the action of calmodulin antagonists on type-I PDE activity while leaving unaffected Ca(2+)-dependent activation, and (ii) that polybasic substances on complexing with calmodulin may serve to enhance the sensitivity of type-I PDE to activation by this regulatory peptide.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Babu Y. S., Bugg C. E., Cook W. J. Structure of calmodulin refined at 2.2 A resolution. J Mol Biol. 1988 Nov 5;204(1):191–204. doi: 10.1016/0022-2836(88)90608-0. [DOI] [PubMed] [Google Scholar]
- Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
- Birnbaumer L., Abramowitz J., Brown A. M. Receptor-effector coupling by G proteins. Biochim Biophys Acta. 1990 May 7;1031(2):163–224. doi: 10.1016/0304-4157(90)90007-y. [DOI] [PubMed] [Google Scholar]
- Blackshear P. J., Haupt D. M. Evidence against insulin-stimulated phosphorylation of calmodulin in 3T3-L1 adipocytes. J Biol Chem. 1989 Mar 5;264(7):3854–3858. [PubMed] [Google Scholar]
- Bosser R., Aligué R., Guerini D., Agell N., Carafoli E., Bachs O. Calmodulin can modulate protein phosphorylation in rat liver cells nuclei. J Biol Chem. 1993 Jul 25;268(21):15477–15483. [PubMed] [Google Scholar]
- Brunton L. L., Mayer S. E. Extrusion of cyclic AMP from pigeon erythrocytes. J Biol Chem. 1979 Oct 10;254(19):9714–9720. [PubMed] [Google Scholar]
- Burgess W. H., Jemiolo D. K., Kretsinger R. H. Interaction of calcium and calmodulin in the presence of sodium dodecyl sulfate. Biochim Biophys Acta. 1980 Jun 26;623(2):257–270. doi: 10.1016/0005-2795(80)90254-8. [DOI] [PubMed] [Google Scholar]
- Cheung W. Y. Cyclic 3',5'-nucleotide phosphodiesterase. Demonstration of an activator. Biochem Biophys Res Commun. 1970 Feb 6;38(3):533–538. doi: 10.1016/0006-291x(70)90747-3. [DOI] [PubMed] [Google Scholar]
- Colca J. R., DeWald D. B., Pearson J. D., Palazuk B. J., Laurino J. P., McDonald J. M. Insulin stimulates the phosphorylation of calmodulin in intact adipocytes. J Biol Chem. 1987 Aug 25;262(24):11399–11402. [PubMed] [Google Scholar]
- Cooper J. A., Sefton B. M., Hunter T. Detection and quantification of phosphotyrosine in proteins. Methods Enzymol. 1983;99:387–402. doi: 10.1016/0076-6879(83)99075-4. [DOI] [PubMed] [Google Scholar]
- Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
- Fujita-Yamaguchi Y., Kathuria S., Xu Q. Y., McDonald J. M., Nakano H., Kamata T. In vitro tyrosine phosphorylation studies on RAS proteins and calmodulin suggest that polylysine-like basic peptides or domains may be involved in interactions between insulin receptor kinase and its substrate. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7306–7310. doi: 10.1073/pnas.86.19.7306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujita-Yamaguchi Y., Sacks D. B., McDonald J. M., Sahal D., Kathuria S. Effect of basic polycations and proteins on purified insulin receptor. Insulin-independent activation of the receptor tyrosine-specific protein kinase by poly(L-lysine). Biochem J. 1989 Nov 1;263(3):813–822. doi: 10.1042/bj2630813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukami Y., Nakamura T., Nakayama A., Kanehisa T. Phosphorylation of tyrosine residues of calmodulin in Rous sarcoma virus-transformed cells. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4190–4193. doi: 10.1073/pnas.83.12.4190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodman M. Decoding the pattern of protein evolution. Prog Biophys Mol Biol. 1981;38(2):105–164. doi: 10.1016/0079-6107(81)90012-2. [DOI] [PubMed] [Google Scholar]
- Graves C. B., Gale R. D., Laurino J. P., McDonald J. M. The insulin receptor and calmodulin. Calmodulin enhances insulin-mediated receptor kinase activity and insulin stimulates phosphorylation of calmodulin. J Biol Chem. 1986 Aug 5;261(22):10429–10438. [PubMed] [Google Scholar]
- Houslay M. D., Siddle K. Molecular basis of insulin receptor function. Br Med Bull. 1989 Jan;45(1):264–284. doi: 10.1093/oxfordjournals.bmb.a072316. [DOI] [PubMed] [Google Scholar]
- Houslay M. D. The use of selective inhibitors and computer modelling to evaluate the role of specific high affinity cyclic AMP phosphodiesterases in the hormonal regulation of hepatocyte intracellular cyclic AMP concentrations. Cell Signal. 1990;2(1):85–98. doi: 10.1016/0898-6568(90)90036-a. [DOI] [PubMed] [Google Scholar]
- Krupinski J., Lehman T. C., Frankenfield C. D., Zwaagstra J. C., Watson P. A. Molecular diversity in the adenylylcyclase family. Evidence for eight forms of the enzyme and cloning of type VI. J Biol Chem. 1992 Dec 5;267(34):24858–24862. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Laurino J. P., Colca J. R., Pearson J. D., DeWald D. B., McDonald J. M. The in vitro phosphorylation of calmodulin by the insulin receptor tyrosine kinase. Arch Biochem Biophys. 1988 Aug 15;265(1):8–21. doi: 10.1016/0003-9861(88)90365-7. [DOI] [PubMed] [Google Scholar]
- Lavan B. E., Lakey T., Houslay M. D. Resolution of soluble cyclic nucleotide phosphodiesterase isoenzymes, from liver and hepatocytes, identifies a novel IBMX-insensitive form. Biochem Pharmacol. 1989 Nov 15;38(22):4123–4136. doi: 10.1016/0006-2952(89)90694-1. [DOI] [PubMed] [Google Scholar]
- Marchmont R. J., Houslay M. D. A peripheral and an intrinsic enzyme constitute the cyclic AMP phosphodiesterase activity of rat liver plasma membranes. Biochem J. 1980 May 1;187(2):381–392. doi: 10.1042/bj1870381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marshall M. S. The effector interactions of p21ras. Trends Biochem Sci. 1993 Jul;18(7):250–254. doi: 10.1016/0968-0004(93)90175-m. [DOI] [PubMed] [Google Scholar]
- Means A. R., Tash J. S., Chafouleas J. G. Physiological implications of the presence, distribution, and regulation of calmodulin in eukaryotic cells. Physiol Rev. 1982 Jan;62(1):1–39. doi: 10.1152/physrev.1982.62.1.1. [DOI] [PubMed] [Google Scholar]
- Miller D. J., Smith G. L. EGTA purity and the buffering of calcium ions in physiological solutions. Am J Physiol. 1984 Jan;246(1 Pt 1):C160–C166. doi: 10.1152/ajpcell.1984.246.1.C160. [DOI] [PubMed] [Google Scholar]
- O'Brien R. M., Houslay M. D., Milligan G., Siddle K. The insulin receptor tyrosyl kinase phosphorylates holomeric forms of the guanine nucleotide regulatory proteins Gi and Go. FEBS Lett. 1987 Feb 23;212(2):281–288. doi: 10.1016/0014-5793(87)81361-3. [DOI] [PubMed] [Google Scholar]
- O'Brien R. M., Siddle K., Houslay M. D., Hall A. Interaction of the human insulin receptor with the ras oncogene product p21. FEBS Lett. 1987 Jun 15;217(2):253–259. doi: 10.1016/0014-5793(87)80673-7. [DOI] [PubMed] [Google Scholar]
- Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
- Renston R. H., Maloney D. G., Jones A. L., Hradek G. T., Wong K. Y., Goldfine I. D. Bile secretory apparatus: evidence for a vesicular transport mechanism for proteins in the rat, using horseradish peroxidase and [125I]insulin. Gastroenterology. 1980 Jun;78(6):1373–1388. [PubMed] [Google Scholar]
- Sacks D. B., Davis H. W., Crimmins D. L., McDonald J. M. Insulin-stimulated phosphorylation of calmodulin. Biochem J. 1992 Aug 15;286(Pt 1):211–216. doi: 10.1042/bj2860211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sacks D. B., Fujita-Yamaguchi Y., Gale R. D., McDonald J. M. Tyrosine-specific phosphorylation of calmodulin by the insulin receptor kinase purified from human placenta. Biochem J. 1989 Nov 1;263(3):803–812. doi: 10.1042/bj2630803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sacks D. B., McDonald J. M. Calmodulin as substrate for insulin-receptor kinase. Phosphorylation by receptors from rat skeletal muscle. Diabetes. 1989 Jan;38(1):84–90. doi: 10.2337/diab.38.1.84. [DOI] [PubMed] [Google Scholar]
- Saville M. K., Houslay M. D. The role of polybasic compounds in determining the tyrosyl phosphorylation of calmodulin by the human insulin receptor. Cell Signal. 1993 Nov;5(6):709–725. doi: 10.1016/0898-6568(93)90032-h. [DOI] [PubMed] [Google Scholar]
- Soos M. A., Siddle K., Baron M. D., Heward J. M., Luzio J. P., Bellatin J., Lennox E. S. Monoclonal antibodies reacting with multiple epitopes on the human insulin receptor. Biochem J. 1986 Apr 1;235(1):199–208. doi: 10.1042/bj2350199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strosberg A. D. Structure/function relationship of proteins belonging to the family of receptors coupled to GTP-binding proteins. Eur J Biochem. 1991 Feb 26;196(1):1–10. doi: 10.1111/j.1432-1033.1991.tb15778.x. [DOI] [PubMed] [Google Scholar]
- Sun X. J., Rothenberg P., Kahn C. R., Backer J. M., Araki E., Wilden P. A., Cahill D. A., Goldstein B. J., White M. F. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature. 1991 Jul 4;352(6330):73–77. doi: 10.1038/352073a0. [DOI] [PubMed] [Google Scholar]
- Thompson W. J., Appleman M. M. Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry. 1971 Jan 19;10(2):311–316. [PubMed] [Google Scholar]
- Wall C. M., Grand R. J., Perry S. V. Biological activities of the peptides obtained by digestion of troponin C and calmodulin with thrombin. Biochem J. 1981 Apr 1;195(1):307–316. doi: 10.1042/bj1950307. [DOI] [PMC free article] [PubMed] [Google Scholar]

