Abstract
The extent to which a rate constant or step within an enzyme mechanism limits the net enzyme rate in a particular condition can be quantified as a flux control coefficient. We derive here a number of relations between the control coefficients and the unidirectional rates, rate constants, and thermodynamic parameters of the enzyme. These and other relations are used to suggest a number of methods for experimentally measuring control coefficients within enzymes.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brown G. C., Cooper C. E. Control analysis applied to single enzymes: can an isolated enzyme have a unique rate-limiting step? Biochem J. 1993 Aug 15;294(Pt 1):87–94. doi: 10.1042/bj2940087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christensen H., Martin M. T., Waley S. G. Beta-lactamases as fully efficient enzymes. Determination of all the rate constants in the acyl-enzyme mechanism. Biochem J. 1990 Mar 15;266(3):853–861. [PMC free article] [PubMed] [Google Scholar]
- Cooper C. E., Nicholls P., Freedman J. A. Cytochrome c oxidase: structure, function, and membrane topology of the polypeptide subunits. Biochem Cell Biol. 1991 Sep;69(9):586–607. doi: 10.1139/o91-089. [DOI] [PubMed] [Google Scholar]
- Doi K., Fromes B., Rossmann K. New device for accurate measurement of the x-ray intensity distribution of x-ray tube focal spots. Med Phys. 1975 Sep-Oct;2(5):268–273. doi: 10.1118/1.594190. [DOI] [PubMed] [Google Scholar]
- Fell D. A., Sauro H. M. Metabolic control and its analysis. Additional relationships between elasticities and control coefficients. Eur J Biochem. 1985 May 2;148(3):555–561. doi: 10.1111/j.1432-1033.1985.tb08876.x. [DOI] [PubMed] [Google Scholar]
- Fierke C. A., Johnson K. A., Benkovic S. J. Construction and evaluation of the kinetic scheme associated with dihydrofolate reductase from Escherichia coli. Biochemistry. 1987 Jun 30;26(13):4085–4092. doi: 10.1021/bi00387a052. [DOI] [PubMed] [Google Scholar]
- Harvey P. J., Floris R., Lundell T., Palmer J. M., Schoemaker H. E., Wever R. Catalytic mechanisms and regulation of lignin peroxidase. Biochem Soc Trans. 1992 May;20(2):345–349. doi: 10.1042/bst0200345. [DOI] [PubMed] [Google Scholar]
- Haynes D. H., Mandveno A. Computer modeling of Ca2+ pump function of Ca2+-Mg2+-ATPase of sarcoplasmic reticulum. Physiol Rev. 1987 Jan;67(1):244–284. doi: 10.1152/physrev.1987.67.1.244. [DOI] [PubMed] [Google Scholar]
- Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
- Nicholls P., Cooper C. E. Modulation of cytochrome oxidase kinetics by indirect antibody action. FEBS Lett. 1989 Jul 3;250(2):453–458. doi: 10.1016/0014-5793(89)80775-6. [DOI] [PubMed] [Google Scholar]
- Northrop D. B. Minimal kinetic mechanism and general equation for deuterium isotope effects on enzymic reactions: uncertainty in detecting a rate-limiting step. Biochemistry. 1981 Jul 7;20(14):4056–4061. doi: 10.1021/bi00517a017. [DOI] [PubMed] [Google Scholar]
- Ray W. J., Jr Rate-limiting step: a quantitative definition. Application to steady-state enzymic reactions. Biochemistry. 1983 Sep 27;22(20):4625–4637. doi: 10.1021/bi00289a003. [DOI] [PubMed] [Google Scholar]
- Smith A. T., Sanders S. A., Thorneley R. N., Burke J. F., Bray R. R. Characterisation of a haem active-site mutant of horseradish peroxidase, Phe41----Val, with altered reactivity towards hydrogen peroxide and reducing substrates. Eur J Biochem. 1992 Jul 15;207(2):507–519. doi: 10.1111/j.1432-1033.1992.tb17077.x. [DOI] [PubMed] [Google Scholar]
- Venkatasubban K. S., Schowen R. L. The proton inventory technique. CRC Crit Rev Biochem. 1984;17(1):1–44. doi: 10.3109/10409238409110268. [DOI] [PubMed] [Google Scholar]