Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Jun 1;300(Pt 2):359–363. doi: 10.1042/bj3000359

Cardiac adenylate deaminase: molecular, kinetic and regulatory properties under phosphate-free conditions.

J K Thakkar 1, D R Janero 1, H M Sharif 1, D Hreniuk 1, C Yarwood 1
PMCID: PMC1138170  PMID: 8002940

Abstract

Adenylate deaminase (EC 3.5.4.6) may help to regulate the adenine nucleotide catabolism characteristic of such disease states as myocardial ischaemia. We report analysis of the molecular, kinetic and allosteric properties of rabbit heart adenylate deaminase when extracted and purified under phosphate-free conditions (i.e., with Hepes/KOH). The enzyme's subunit molecular mass (approximately 81 kDa), pI (6.5), substrate specificity for 5'-AMP, and activation by K+ were identical in the absence or presence of phosphate. At each chromatographic step during isolation without phosphate, cardiac adenylate deaminase showed a lower apparent activity as compared with the enzyme prepared with phosphate present. Kinetic constants for the phosphate-free rabbit heart adenylate deaminase preparation (Km 0.54 mM AMP; Vmax. 1.4 mumol/min per mg of protein) were approximately 10-fold lower than those of the enzyme isolated with phosphate. The same irreversible decrease in kinetic constants could be achieved by dialysing phosphate from the phosphate-containing enzyme preparation. The relationship between enzyme activity and substrate concentration was sigmoidal in the presence of phosphate, but hyperbolic in its absence. Cardiac adenylate deaminase under phosphate-free conditions was no longer allosterically activated by ATP and ADP, yet remained inhibitable by GTP. Enzyme inhibition by the transition-state mimic coformycin was not influenced by phosphate status. The phosphate-free preparation of rabbit heart adenylate deaminase was markedly labile and extremely susceptible to proteolysis by trypsin or chymotrypsin. The inactivation kinetics and fragmentation pattern in response to controlled proteolysis depended on whether the enzyme had been isolated with or without phosphate present, suggesting a conformational difference between the two enzyme preparations. These data constitute direct evidence that the absence of phosphate irreversibly converts cardiac adenylate deaminase into a pseudo-isoenzyme with distinct kinetic, regulatory and stability properties.

Full text

PDF
359

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barsacchi R., Ranieri-Raggi M., Bergamini C., Raggi A. Adenylate metabolism in the heart. Regulatory properties of rabbit cardiac adenylate deaminase. Biochem J. 1979 Aug 15;182(2):361–366. doi: 10.1042/bj1820361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Coffee C. J., Solano C. Rat muscle 5'-adenylic acid aminohydrolase. Role of K+ and adenylate energy charge in expression of kinetic and regulatory properties. J Biol Chem. 1977 Mar 10;252(5):1606–1612. [PubMed] [Google Scholar]
  4. Hu B., Altschuld R. A., Hohl C. M. Adenosine stimulation of AMP deaminase activity in adult rat cardiac myocytes. Am J Physiol. 1993 Jan;264(1 Pt 1):C48–C53. doi: 10.1152/ajpcell.1993.264.1.C48. [DOI] [PubMed] [Google Scholar]
  5. Janero D. R., Hreniuk D., Sharif H. M. Hydrogen peroxide-induced oxidative stress to the mammalian heart-muscle cell (cardiomyocyte): nonperoxidative purine and pyrimidine nucleotide depletion. J Cell Physiol. 1993 Jun;155(3):494–504. doi: 10.1002/jcp.1041550308. [DOI] [PubMed] [Google Scholar]
  6. Jenkins R. L., McDaniel H. G., Atkins L. Changes in AMP deaminase activities in the hearts of diabetic rats. Biochim Biophys Acta. 1991 Apr 29;1077(3):379–384. doi: 10.1016/0167-4838(91)90554-d. [DOI] [PubMed] [Google Scholar]
  7. Kaletha K., Nowak G. Developmental forms of human skeletal-muscle AMP deaminase. The kinetic and regulatory properties of the enzyme. Biochem J. 1988 Jan 1;249(1):255–261. doi: 10.1042/bj2490255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Lowenstein J., Tornheim K. Ammonia production in muscle: the purine nucleotide cycle. Science. 1971 Jan 29;171(3969):397–400. doi: 10.1126/science.171.3969.397. [DOI] [PubMed] [Google Scholar]
  10. Meghji P., Skladanowski A. C., Newby A. C., Slakey L. L., Pearson J. D. Effect of 5'-deoxy-5'-isobutylthioadenosine on formation and release of adenosine from neonatal and adult rat ventricular myocytes. Biochem J. 1993 May 1;291(Pt 3):833–839. doi: 10.1042/bj2910833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Merkler D. J., Schramm V. L. Catalytic and regulatory site composition of yeast AMP deaminase by comparative binding and rate studies. Resolution of the cooperative mechanism. J Biol Chem. 1990 Mar 15;265(8):4420–4426. [PubMed] [Google Scholar]
  12. Ogasawara N., Goto H., Watanabe T. Isozymes of rat AMP deaminase. Biochim Biophys Acta. 1975 Oct 22;403(2):530–537. doi: 10.1016/0005-2744(75)90081-9. [DOI] [PubMed] [Google Scholar]
  13. Ogasawara N., Goto H., Yamada Y. AMP deaminase isozymes in rabbit red and white muscles and heart. Comp Biochem Physiol B. 1983;76(3):471–473. doi: 10.1016/0305-0491(83)90277-8. [DOI] [PubMed] [Google Scholar]
  14. Ogasawara N., Goto H., Yamada Y., Watanabe T., Asano T. AMP deaminase isozymes in human tissues. Biochim Biophys Acta. 1982 Feb 2;714(2):298–306. doi: 10.1016/0304-4165(82)90337-3. [DOI] [PubMed] [Google Scholar]
  15. SCHWERT G. W., TAKENAKA Y. A spectrophotometric determination of trypsin and chymotrypsin. Biochim Biophys Acta. 1955 Apr;16(4):570–575. doi: 10.1016/0006-3002(55)90280-8. [DOI] [PubMed] [Google Scholar]
  16. Składanowski A. C., Zydowo M. M. Two forms of AMP deaminase in bovine heart. Acta Biochim Pol. 1988;35(1):29–37. [PubMed] [Google Scholar]
  17. Smiley K. L., Jr, Berry A. J., Suelter C. H. An improved purification, crystallization, and some properties of rabbit muscle 5'-adenylic acid deaminase. J Biol Chem. 1967 May 25;242(10):2502–2506. [PubMed] [Google Scholar]
  18. Spychała J., Kaletha K., Makarewicz W. Developmental changes of chicken liver AMP deaminase. Biochem J. 1985 Oct 15;231(2):329–333. doi: 10.1042/bj2310329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Spychała J., Marszałek J., Kucharczyk E. AMP deaminases of rat small intestine. Biochim Biophys Acta. 1986 Feb 19;880(2-3):123–130. doi: 10.1016/0304-4165(86)90071-1. [DOI] [PubMed] [Google Scholar]
  20. Thakkar J. K., Janero D. R., Yarwood C., Sharif H. M. Modulation of mammalian cardiac AMP deaminase by protein kinase C-mediated phosphorylation. Biochem J. 1993 Apr 15;291(Pt 2):523–527. doi: 10.1042/bj2910523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Thakkar J. K., Janero D. R., Yarwood C., Sharif H., Hreniuk D. Isolation and characterization of AMP deaminase from mammalian (rabbit) myocardium. Biochem J. 1993 Mar 1;290(Pt 2):335–341. doi: 10.1042/bj2900335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Van Belle H., Wynants J., Goossens F. Formation and release of nucleosides in the ischemic myocardium. Is the guinea-pig the exception? Basic Res Cardiol. 1985 Nov-Dec;80(6):653–660. doi: 10.1007/BF01907864. [DOI] [PubMed] [Google Scholar]
  23. Wheeler T. J., Lowenstein J. M. Adenylate deaminase from rat muscle. Regulation by purine nucleotides and orthophosphate in the presence of 150 mM KCl. J Biol Chem. 1979 Sep 25;254(18):8994–8999. [PubMed] [Google Scholar]
  24. Yoshino M., Murakami K. A kinetic study of the inhibition of yeast AMP deaminase by polyphosphate. Biochim Biophys Acta. 1988 Jun 13;954(3):271–276. doi: 10.1016/0167-4838(88)90082-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES