Abstract
Haemoglobin Howick shows a high oxygen affinity (p50 = 1 mmHg) and a low co-operativity (n = 1.3). Equilibrium studies show the protein to be essentially totally dimeric in the oxygenated form. A wide range of rapid kinetic experiments indicate that the deoxygenated form of the protein exists in a tetramer<-->dimer equilibrium with an associated equilibrium constant of 3 microM. These kinetic data also indicate that the oxygenated form of the protein exists in a tetramer<-->dimer equilibrium with an associated equilibrium constant of 35 mM, and furthermore clearly identifies a large increase in the rate of the tetramer-to-dimer dissociation process as the origin of the vastly increased dissociation equilibrium constants. Simulations of the protein-concentration-dependence of the oxygen-binding properties of haemoglobin Howick, based on the measured equilibrium parameters, closely fits the experimental data. The change in dimerization constant for the deoxygenated form of the protein corresponds remarkably well to the free-energy change predicted for the simple transfer of the amino acid side chain at position beta 37 from a hydrophobic to a hydrophilic environment during the dimerization process.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ACKERS G. K., THOMPSON T. E. DETERMINATION OF STOICHIOMETRY AND EQUILIBRIUM CONSTANTS FOR REVERSIBLY ASSOCIATING SYSTEMS BY MOLECULAR SIEVE CHROMATOGRAPHY. Proc Natl Acad Sci U S A. 1965 Feb;53:342–349. doi: 10.1073/pnas.53.2.342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andersen M. E., Moffat J. K., Gibson Q. H. The kinetics of ligand binding and of the association-dissociation reactions of human hemoglobin. Properties of deoxyhemoglobin dimers. J Biol Chem. 1971 May 10;246(9):2796–2807. [PubMed] [Google Scholar]
- Antonini E., Brunori M., Anderson S. Studies on the relations between molecular and functional properties of hemoglobin. VII. Kinetic effects of the reversible dissociation of hemoglobin into single chain molecules. J Biol Chem. 1968 Apr 25;243(8):1816–1822. [PubMed] [Google Scholar]
- Atha D. H., Riggs A. Tetramer-dimer dissociation in homoglobin and the Bohr effect. J Biol Chem. 1976 Sep 25;251(18):5537–5543. [PubMed] [Google Scholar]
- Brittain T. A stopped-flow study of the cupric ion oxidation of adult-human haemoglobin. Biochem J. 1980 Jun 1;187(3):803–807. doi: 10.1042/bj1870803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brittain T. A two-state thermodynamic and kinetic analysis of the allosteric functioning of the haemoglobin of an extreme poikilotherm. Biochem J. 1984 Aug 1;221(3):561–568. doi: 10.1042/bj2210561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brittain T., Greenwood C. Photolytic studies on the carbon monoxide complex of sulphaemoglobin. Biochem J. 1982 Jan 1;201(1):153–159. doi: 10.1042/bj2010153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brittain T., Sutherland J., Greenwood C. A study of the kinetics of the reaction of ligands with the liganded states of mouse embryonic haemoglobins. Biochem J. 1986 Feb 15;234(1):151–155. doi: 10.1042/bj2340151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bunn H. F., Wohl R. C., Bradley T. B., Cooley M., Gibson Q. H. Functional properties of hemoglobin Kempsey. J Biol Chem. 1974 Dec 10;249(23):7402–7409. [PubMed] [Google Scholar]
- Chiancone E. Dissociation of hemoglobin into subunits. II. Human oxyhemoglobin: gel filtration studies. J Biol Chem. 1968 Mar 25;243(6):1212–1219. [PubMed] [Google Scholar]
- Coletta M., Brittain T., Brunori M. Evidence for a kinetic heterogeneity in ligand binding to R-state haemoglobin Kempsey [Asp-G1(99) beta----Asn]. Biochem J. 1986 Sep 1;238(2):353–357. doi: 10.1042/bj2380353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fermi G. Three-dimensional fourier synthesis of human deoxyhaemoglobin at 2-5 A resolution: refinement of the atomic model. J Mol Biol. 1975 Sep 15;97(2):237–256. doi: 10.1016/s0022-2836(75)80037-4. [DOI] [PubMed] [Google Scholar]
- Fujita S. Oxygen equilibrium characteristics of abnormal hemoglobins. Hirose (alpha-2-beta-2-37Ser), L Ferrara (alpha-2-47-Gly-beta-2), Broussais (alpha-2-90-Asn-beta-2), and Dhofar (alpha-2-beta-2-58Arg). J Clin Invest. 1972 Oct;51(10):2520–2529. doi: 10.1172/JCI107067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guidotti G. Studies on the chemistry of hemoglobin. I. The reactive sulfhydryl groups. J Biol Chem. 1967 Aug 25;242(16):3673–3684. [PubMed] [Google Scholar]
- Hewitt J. A., Kilmartin J. V., Eyck L. F., Perutz M. F. Noncooperativity of the dimer in the reaction of hemoglobin with oxygen (human-dissociation-equilibrium-sulfhydryl-absorption-x-ray analysis). Proc Natl Acad Sci U S A. 1972 Jan;69(1):203–207. doi: 10.1073/pnas.69.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imai K., Yonetani H. The hemoglobin-oxygen equilibrium associated with subunit dissociation. Biochim Biophys Acta. 1977 Jan 25;490(1):164–170. doi: 10.1016/0005-2795(77)90116-7. [DOI] [PubMed] [Google Scholar]
- Kellett G. L., Gutfreund H. Reactions of haemoglobin dimers after ligand dissociation. Nature. 1970 Aug 29;227(5261):921–926. doi: 10.1038/227921a0. [DOI] [PubMed] [Google Scholar]
- Mathews A. J., Rohlfs R. J., Olson J. S., Tame J., Renaud J. P., Nagai K. The effects of E7 and E11 mutations on the kinetics of ligand binding to R state human hemoglobin. J Biol Chem. 1989 Oct 5;264(28):16573–16583. [PubMed] [Google Scholar]
- Mills F. C., Johnson M. L., Ackers G. K. Oxygenation-linked subunit interactions in human hemoglobin: experimental studies on the concentration dependence of oxygenation curves. Biochemistry. 1976 Nov 30;15(24):5350–5362. doi: 10.1021/bi00669a023. [DOI] [PubMed] [Google Scholar]
- Nozaki Y., Tanford C. The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale. J Biol Chem. 1971 Apr 10;246(7):2211–2217. [PubMed] [Google Scholar]
- Olson J. S., Andersen M. E., Gibson Q. H. The dissociation of the first oxygen molecule from some mammalian oxyhemoglobins. J Biol Chem. 1971 Oct 10;246(19):5919–5923. [PubMed] [Google Scholar]
- Park C. M. The dimerization of deoxyhemoglobin and of oxyhemoglobin. Evidence for cleavage along the same plane. J Biol Chem. 1970 Oct 25;245(20):5390–5394. [PubMed] [Google Scholar]
- Perutz M. F., Muirhead H., Cox J. M., Goaman L. C. Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8 A resolution: the atomic model. Nature. 1968 Jul 13;219(5150):131–139. doi: 10.1038/219131a0. [DOI] [PubMed] [Google Scholar]
- Pettigrew D. W., Romeo P. H., Tsapis A., Thillet J., Smith M. L., Turner B. W., Ackers G. K. Probing the energetics of proteins through structural perturbation: sites of regulatory energy in human hemoglobin. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1849–1853. doi: 10.1073/pnas.79.6.1849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sasaki J., Imamura T., Yanase T. Hemoglobin Hirose, a human hemoglobin variant with a substitution at the alpha1beta2 interface. Subunit dissociation and the equilibria and kinetics of ligand binding. J Biol Chem. 1978 Jan 10;253(1):87–94. [PubMed] [Google Scholar]
- Turner B. W., Pettigrew D. W., Ackers G. K. Measurement and analysis of ligand-linked subunit dissociation equilibria in human hemoglobins. Methods Enzymol. 1981;76:596–628. doi: 10.1016/0076-6879(81)76147-0. [DOI] [PubMed] [Google Scholar]
- Vallone B., Vecchini P., Cavalli V., Brunori M. Site-directed mutagenesis in hemoglobin. Effect of some mutations at protein interfaces. FEBS Lett. 1993 Jun 14;324(2):117–122. doi: 10.1016/0014-5793(93)81375-a. [DOI] [PubMed] [Google Scholar]
- Vandegriff K. D., Le Tellier Y. C., Winslow R. M., Rohlfs R. J., Olson J. S. Determination of the rate and equilibrium constants for oxygen and carbon monoxide binding to R-state human hemoglobin cross-linked between the alpha subunits at lysine 99. J Biol Chem. 1991 Sep 15;266(26):17049–17059. [PubMed] [Google Scholar]
