Skip to main content
eNeurologicalSci logoLink to eNeurologicalSci
. 2024 Aug 21;37:100521. doi: 10.1016/j.ensci.2024.100521

Navigating the clinical landscape of artery of Percheron infarction: A systematic review

Oday Atallah a,⁎,1, Yasser F Almealawy b,1, Arwa Salam Alabide c, Minaam Farooq d, Vivek Sanker e, Suraa N Alrubaye f, Rami Darwazeh g, Wireko Andrew Awuah h,i, Toufik Abdul-Rahman i, Ahmed Muthana j, Aalaa Saleh k, Jack Wellington l, Amr Badary m
PMCID: PMC11382010  PMID: 39257866

Abstract

Introduction

Infarction of the artery of Percheron (AOP) is a rare vascular condition where a single arterial branch supplies blood to the thalamic and midbrain regions, leading to neurological deficits. The challenge lies in its often-delayed diagnosis due to its rarity and diverse clinical presentations, necessitating heightened awareness among clinicians for expedited diagnosis and appropriate therapeutic interventions.

Materials and methods

All relevant studies involving patients diagnosed with infarction of AOP were retrieved from PubMed, Google Scholar, Web of Science, and Scopus. Only human studies that were published in full English-language reports were included. Included in the search were the terms “Artery of Percheron,” “infarction,” “stroke,” and “demarcation”. Age, gender, presenting symptoms, treatment, recovery time, and outcome of patients with AOP infarction were all recorded.

Results

A systematic review was conducted on a total of 530 articles, out of which 130 articles met the specified requirements. The average age is 59, with men comprising 57.7% of the population. The symptoms reported were visual disturbance in 43.9% of cases and changed mental state in 77.2% of cases. Treatment options include conservative management (85.4%), thrombolysis (11.3%), and other approaches. The optimal age range for recovery is between 41 and 50 years old.

Conclusion

Our study on acute AOP infarction highlights male predominance, common comorbidities like hypertension and diabetes, and prevalent symptoms including visual disturbance and altered mental state. Early recognition is crucial, with thrombolytic therapy within the critical time window showing promising outcomes. These findings offer insights for enhanced clinical management of AOP infarction.

Keywords: Artery of Percheron, Infarction, Stroke, Midbrain, Thalamus

Highlights

  • AOP infarction is an uncommon cerebrovascular accident, accounting for 0.1% of ischemic strokes and 4% of thalamic strokes.

  • Altered consciousness, cognitive decline, and supranuclear vertical gaze palsies are common symptoms of AOP infarction.

  • Early detection is crucial for managing severe deficiencies due to associations between several causes.

1. Introduction

Considering the neurophysiological significance of the thalamus, a rare form of stroke may jeopardize its cerebrovascular blood supply. There exist variations in said vasculature to the brainstem and thalamus. Merely 4–12% of the population has the artery of Percheron (AOP), making it one of the uncommon variations. Gérard Percheron, a French neurologist, originally reported it in 1973. He stated that it originated from the proximal posterior cerebral artery (PCA), which supplies the paramedian thalamus and rostral midbrain with bilateral artery [1].

Bilateral thalamic infarcts precipitated by AOP infarction may or may not involve the midbrain. Research indicates that this accounts for 0.1% of ischemic and 4% of thalamic strokes, respectively, suggesting such a rarity of this cerebrovascular accident [2,3]. As the thalamus is involved in a plethora of neurophysiological functions, it may be challenging to diagnose the presentation. Nonetheless, altered consciousness, cognitive decline, and supranuclear vertical gaze palsies are the most common symptoms of AOP infarction [4,5].

Depending on the pathophysiological etiology, the management of AOP infarction varies. Although dependent on the severity of the infarction, the prognosis is generally favorable in terms of mortality and long-term neurological sequalae [6]. Thus, the aim of this systematic review is to provide a comprehensive overview of the diagnosis, clinical symptomatology, and management options available for AOP infarction. Additionally, our study represents the most comprehensive review to-date of AOP infarction, which was not discussed systematically before.

2. Methods

Moreover, the data extracted from selected publications underwent a rigorous evaluation encompassing multifaceted variables such as age, gender distribution, employed treatment modalities, and other significant factors shaping the complex landscape of AOP. This comprehensive approach facilitated a nuanced understanding of the intricacies surrounding AOP across various dimensions.

Our systematic review of AOP commenced with a meticulous examination of diverse facets, encompassing patient demographics, etiological variables, clinical presentations, diagnostic methodologies, treatment approaches, and subsequent outcomes. Adhering rigorously to the PRISMA guidelines, our methodology ensured a comprehensive analysis.

2.1. Search strategy

To ensure inclusivity, an extensive search spanned four key online databases—PubMed/MEDLINE, Google Scholar, Web of Science, and Scopus—without imposing any timeframe restrictions. A refined set of keywords and Mesh phrases: “Artery of Percheron,” “infarction,” “stroke,” and “demarcation,” was tailored to optimize search precision and breadth.

In alignment with our research focus, the review specifically targeted human studies published in the medium of the English language and granting access to full-text content. Articles that did not meet the above-mentioned criteria were excluded.

2.2. Screening of studies and data extraction

Our screening process commenced with an initial assessment of study titles and abstracts to gauge alignment with our research scope. Subsequently, after eliminating duplicate entries, Two independent authors (O.A. and Y.A.) extracted relevant data from selected studies. The data collected included information such as study design, participant demographics, and the number of participants with respective outcomes and complications. Discrepancies in data extraction were resolved through consensus, and any unresolved disagreements were addressed by involving a third reviewer (O.B.) (Fig. 1).

Fig. 1.

Fig. 1

PRISMA Flow-diagram of the related articles.

2.3. Data analysis

The data was subjected to analysis, encompassing several variables such as age, gender, presenting symptoms, imaging findings, strategies for treatment, clinical outcomes, and subsequent follow-up. The analysis was done using the SPSS 26. Raw data extracted from studies was used as numeric inputs and accordingly scaled, nominated or ordinated. The frequencies, mean, median and the quartiles were analyzed. The significance of the results was delivered by using the Chi-Square in the cross tables.

2.4. Quality assessment

The quality assessment was performed using the JBI Checklist for Case Reports. Each article was screened twice and no article was excluded following the assessment.

3. Results

Initially, 530 articles were drawn from four databases. After a thorough review of titles, abstracts, and full texts, 130 papers met the inclusion criteria. This study investigated patient-level data from diverse research designs involving 279 individuals diagnosed with AOP infarction (Table 1).

Table 1.

Supplementary table of the papers that were included.

Nr. Author (Last name) Gender Age Comorbidities/Risc factors
Duration of symptoms (days) Symptoms
Neurological status
Arterial hypertension Diabetes mellitus Visual Symptoms - Gaze Palsy Altered Consciousness Memory Deficits Consciousness Paresis Anisocoria
1 Agrawal 2019 [40] F 68 Yes Yes <1 Yes Yes No Unconscious Quadriparesis Yes
2 Sharma 2021 [41] M 79 No No 2 No No No Conscious Left hemiparesis No
3 Almamun 2015 [4] M 70 Yes No <1 No Yes No Unconscious Quadriparesis Yes
4 Matsumoto 2022 [42] M 74 No No NA Yes Yes No Unconscious Quadriparesis No
5 Coelh 2018 [43] M 56 Yes No 5 No No Yes Conscious Left hemiparesis No
6 Baloyannis 2009 [44] M 38 No No <1 No Yes Yes Unconscious No No
7 Xiao 2018 [20] F 48 No No <1 No Yes No Conscious Quadriparesis No
8 Adcock 2019 [45] F 69 No No <1 No No No Conscious No No
9 Tryambake 2018 [46] F 78 Yes No >1 Yes Yes Yes Unconscious No No
10 Ali 2018 [47] M 39 No No <1 No Yes No Unconscious No No
11 Ravi 2020 [48] F 68 Yes No <1 No Yes No Unconscious Yes No
12 Biswas 2022 [49] M 37 No No >1 Yes No No Conscious No No
13 Pires 2021 [50] F 77 Yes No <1 Yes Yes No Unconscious No No
14 Al Ghadeeb 2022 [51] F 33 Yes Yes <1 No Yes No Unconscious No No
15 Nasir 2023 [52] M 68 Yes No <1 No Yes No Unconscious Yes No
16 Espinosa 2018 [53] M 59 No Yes <1 Yes Yes No Unconscious Yes Yes
17 Sudhir 2014 [54] M 48 No No >1 No No No Conscious No No
18 Bin Naeem 2017 [55] F 66 Yes No <1 Yes No No Conscious No No
19 Lloyd 2021 [56] F 54 No No NA Yes Yes No Unconscious No Yes
20 Kheiralla 2021 [57] M 55 No No NA Yes Yes No Unconscious No Yes
21 Hegde 2016 [58] M 40 No No <1 No No No Conscious Yes No
22 Jayam-Trouth A 2015 [59] M 64 Yes No <1 Yes Yes No Unconscious Yes No
23 Raicevic R 2011 [60] M 39 No No No No No No Disturbed No No
24 Sonawale 2017 [61] F 58 No No >1 No No No Unconscious No No
25 Ahizoune A 2023 [62] M 37 No No NA Yes No No Conscious No No
26 M Seneviratne 2020 [63] M 51 No No NA Yes No No Conscious No No
27 Smithason 2018 [64] M 68 Yes No <1 No Yes No Unconscious No No
28 Deng 2020 [65] F 40 No No <1 No Yes No Unconscious No Yes
29 Lapsia 2019 [66] M 59 No No <1 No No No Conscious No Yes
30 Arpita 2016 [67] F 37 No No <2 Yes Yes No Conscious No No
31 Liu 2013 [68] M 77 Yes Yes <1 No Yes No Unconscious No No
32 Chang 2012 [69] F 85 Yes Yes <1 No Yes No NA No No
33 Chan 2012 [70] M 62 No No >1 No Yes No NA NA NA
34 Ahmetgjekaj 2021 [1] M 67 Yes Yes NA Yes No No Conscious No Yes
35 Vemulapalli 2022 [71] F 56 Yes No NA No No No Conscious No No
36 Neuwirth 2017 [72] M 56 No No NA No Yes No Unconscious No Yes
37 Alharbi 2023 [73] F 58 Yes No <1 Yes No No Conscious Right hemiparesis No
38 Mikesell 2018 [6] M 72 Yes Yes NA Yes Yes No Unconscious No No
39 Vipparala 2019 [5] F 58 Yes Yes <1 No Yes No Unconscious No Yes
40 Popovic 2015 [74] F 58 Yes No <1 Yes Yes No Unconscious No No
41 DiFrancesco 2017 [75] F 71 Yes No <1 No Yes No NA NA NA
42 Banza 2021 [37] M 88 Yes No <1 No Yes Yes Conscious No No
43 Cappellari 2021 [76] M 70 Yes Yes NA No Yes No Unconscious No No
44 Kumar 2022 [77] M 57 No No <1 No No No Conscious No No
45 Michieletti 2019 [78] M 52 No No NA Yes Yes No Unconscious No No
46 Small 2018 [79] F 86 Yes No <1 No Yes No Unconscious Yes No
47 Cai 2017 [16] 14 m 4 F 63,22 14 Yes 5 Yes NA 15 Yes 17 Yes No 9 No No
48 Boghi 2021 [80] F 19 No No NA No No No Conscious No No
49 Sijapati 2017 [81] F 64 Yes No <1 No Yes No Unconscious Left hemiplagia Yes
50 Liu 2017 [82] M 75 Yes Yes <1 No Yes No Unconscious No No
51 Parajuli 2023 [83] F 60 Yes No <1 No Yes No Unconscious Left hemiplagia Yes
52 Sonu 2023 [84] M 90 No No >1 No No No Conscious No No
53 Danjuma 2021 [85] M 58 Yes No <1 No No No Conscious No No
54 Gutierrez-Manjarrez 2018 [19] F 62 Yes No <1 No Yes No Unconscious No No
55 Munshi 2021 [86] M 90 Yes No <1 No Yes No Conscious Right hemiparesis No
56 Shaaban 2016 [87] M 37 No No <1 No Yes No Unconscious No Yes
57 López-Martínez 2009 [88] M 27 No No <1 No Yes No Unconscious No Yes
58 Bosschaert 2010 [89] M 40 No No <1 No Yes No Unconscious No No
59 Elsharkawy 2019 [90] M 39 No No <1 No Yes No Unconscious No No
60 Jagroo 2022 [91] M 59 Yes No <1 No No Yes Conscious No No
61 Yang 2022 [92] M 58 No No <1 No No No Unconscious No No
62 Zhu 2021 [93] M 57 Yes No >1 No No Yes Unconscious No Yes
63 Ochoa 2014 [3] 8 M 7F 48 5 Yes 2 Yes NA 9 Yes 9 Yes 2 Yes 9 Unsonscios 10 Motor deficit No
64 Moretti 2017 [94] F 57 No No <1 Yes Yes No Unconscious No No
65 Boyle 2017 [95] M 77 No No NA No Yes No Unconscious No No
66 Chang 2017 [96] F 36 No No Yes Yes Yes No Unconscious Quadriparesis Yes
67 Henninger 2011 [97] M 52 No No NA Yes No No Unconscious No No
68 Tremolizzo 2020 [98] M 60 No No <1 No Yes No Unconscious No Yes
69 Agildere 2013 [99] F 82 Yes Yes <1 No Yes No Unconscious No No
70 Sengupta 2017 [100] M 81 No No <1 No Yes No Unconscious No Yes
71 Shrestha 2021 [101] M 68 NA NA NA Yes No No Unconscious No No
72 Kesserwani 2021 [102] F 81 Yes No >1 No No No Conscious No No
73 Hruby 2008 [103] M 62 No No NA No Yes No Unconscious No No
74 Kuar 2016 [104] M 60 No No <1 Yes No No Conscious No No
75 Boret 2010 [28] M 64 No Yes <1 No Yes No Unconscious No Yes
76 Caprara 2021 [105] F 70 No No <1 No No No Conscious No No
77 Zhenzhong Li 2023 [106] M 51 No No <1 No Yes No Unconscious No Yes
78 Sienkiewicz-Jarosz 2016 [107] M 61 Yes No NA No Yes No Unconscious Left hemiparesis Yes
79 O'Brien 2012 [108] M 46 No No NA No Yes No Unconscious No No
80 Pathirage 2019 [109] M 35 No No <1 No Yes No Unconscious No Yes
81 Devi 2021 [110] F 55 No No <1 No No No Conscious No No
82 Wischmeyer 2016 [111] M 69 Yes No <1 No Yes No Unconscious No Yes
83 Ndiaye 2023 [112] F 50 Yes No NA No Yes No Unconscious Right hemiplagia Yes
84 Almeida 2023 [113] F 58 No No <1 No No No Conscious Right hemiparesis No
85 Onder 2020 [114] F 58 No No <1 No Yes No Unconscious No No
86 Raphaeli 2006 [115] M 56 Yes Yes <1 No Yes No Unconscious No No
87 González 2014 [116] F 49 No No <1 No Yes No Unconscious No No
88 lee Js 2019 [117] F 58 No No NA No Yes No Unconscious No No
89 Salvatierra 2011 [118] M 58 Yes Yes NA No No No Conscious No No
90 Alegría-Loyola 2018 [119] M 84 Yes No NA No Yes No Unconscious Quadriparesis No
91 Lee 2013 [120] F 31 No No >1 Yes No No Conscious No No
92 Budinčević 2023 [121] F 62 No No <1 Yes No No Conscious Left hemiparesis No
93 Ghirlanda 2002 [122] F 83 Yes No NA Yes Yes No Conscious No No
94 Law-Ye 2023 [123] M 55 NA NA <1 No Yes No Unconscious No No
95 Sharma 2019 [124] M 50 No No <1 Yes Yes No Conscious No No
96 Uceda A 2019 [125] F 69 Yes Yes <1 No Yes No Unconscious No No
97 Nowacki 2017 [126] F 57 No No <1 No Yes Yes Conscious No No
98 Hsu 2011 [127] M 30 No No <1 Yes No No Conscious No No
99 Tayfun 2016 [29] F 73 No Yes <1 No Yes No Conscious No No
100 Hu 2019 [128] F 65 No No <1 No Yes No Unconscious No No
101 Desai 2023 [129] M 33 No No <1 No Yes No Unconscious No No
102 Hedger 2021 [130] F 79 Yes No <1 Yes Yes No Yes No No
103 Dere 2021 [131] 6 M 4 F 63,6 8 Yes 4 Yes NA 6 Yes 10 Yes No 4 Unconscious 7 Motor deficit No
104 Turla 2019 [132] F 76 Yes No <1 No Yes No Unconscious No Yes
105 Thiruvarutchelvan 2019 [133] F 61 Yes No <1 Yes Yes No Conscious No No
106 Morsli 2023 [134] M 51 Yes Yes <1 Yes Yes No Unconscious Right hemiplagia Yes
107 Batra 2022 [135] M 69 Yes No <1 Yes Yes No Unconscious No Yes
108 Chin 2023 [136] M 62 No No >1 No Yes No Unconscious No No
109 Liza-Sharmini 2018 [137] F 24 No No >1 Yes No No Conscious No No
110 Pyun 2017 [138] F 59 Yes Yes >1 Yes Yes No Conscious No No
111 Durmaz 2019 [139] F 70 No No <1 No Yes No Unconscious Right hemiplagia No
112 Pathirana KD 2017 [140] F 71 No No <1 No Yes Yes Unconscious No No
113 Hernandez-Vara 2017 [141] F 68 Yes No <1 No No Tremor Unconscious No No
114 Wright 2021 [142] M 62 Yes No <1 Yes No No Coscious No Yes
115 Chiang 2021 [143] F 45 No No <1 Yes No No Conscious Right hemiparesis No
116 Chang 2009 [144] M 1 month No No <1 No No No Conscious No No
117 Wang 2022 [145] F 65 Yes Yes <1 Yes Yes No Conscious No No
F 71 Yes Yes <1 Yes Yes No Unconscious Yes No
M 68 Yes Yes <1 No Yes No Unconscious Yes No
M 66 Yes Yes <1 No Yes No Unconscious Yes No
M 63 Yes No <1 No Yes No Unconscious Yes No
M 69 Yes Yes <1 No Yes No Conscious Yes No
M 45 Yes Yes <1 No Yes No Conscious No No
M 64 Yes Yes <1 No Yes No Conscious Yes No
M 60 Yes Yes <1 No Yes No Conscious Yes No
M 67 Yes Yes <1 Yes Yes No Unconscious Yes No
F 29 No No <1 No Yes No Unconscious No No
F 43 No No <1 No Yes No Unconscious Hemiplagia No
M 77 Yes Yes <1 Yes Yes No Unconscious Yes No
F 55 Yes Yes <1 No Yes No Conscious Yes No
M 60 Yes No <1 Yes Yes No Conscious No No
M 67 Yes Yes <1 No Yes No Conscious No No
M 53 No No <1 No Yes No Conscious Yes No
F 64 Yes Yes <1 Yes Yes No Conscious Yes No
M 66 Yes No <1 No Yes Yes Conscious No No
F 75 Yes Yes <1 Yes Yes No Conscious Yes No
M 23 No No <1 No Yes No Conscious No No
F 30 No No <1 No Yes No Unconscious No No
M 65 No Yes <1 No Yes No Conscious Hemiplagia No
118 Boussarsar 2020 [146] M 43 Yes No NA No Yes No Unconscious No No
M 70 Yes Yes NA No Yes No Unconscious No No
M 82 No No NA No Yes No Unconscious No No
119 Ameen 2011 [23] M 16 No No <1 Yes Yes No Unconscious No No
M 49 No Yes <1 No Yes No Unconscious Yes Yes
120 Howard 2016 [147] M 77 No No NA Yes Yes No Unconscious No No
M 60 No No NA Yes Yes No Unconscious No No
F 49 No No NA Yes Yes No Unconscious No No
F 55 No No NA No Yes No Unconscious No No
121 Thacker 2017 [148] F 37 No No NA Yes Yes No Conscious Riht hemiplagia No
F 45 No No NA Yes Yes No Conscious Riht hemiplagia No
M 55 No No NA No Yes No Conscious Riht hemiplagia No
122 Fidalgo 2022 [149] M 60 NA NA NA No Yes No NA NA NA
M 68 NA NA NA No Yes No NA NA NA
M 53 NA NA NA No Yes No NA NA NA
M 71 NA NA NA No Yes No NA NA NA
F 61 NA NA NA Yes No No NA NA NA
F 66 NA NA NA Yes No No NA NA NA
F 78 NA NA NA Yes No No NA NA NA
F 80 NA NA NA Yes No No NA NA NA
123 Howard 2019 [150] M 76 No No <1 Yes Yes No Conscious No No
M 77 No No <1 Yes Yes No Unconscious No No
F 58 No No <1 Yes Yes No Conscious Hemiparesis Yes
F 49 No No >1 Yes Yes No Conscious No No
F 30 No No >1 Yes Yes No Conscious No No
F 68 No No >1 Yes Yes No Conscious No No
124 Yao 2023 [151] M 59 Yes Yes <1 No Yes No No No No
F 63 Yes Yes <1 No Yes Yes No No Yes
M 83 Yes No <1 No Yes No Unconscious Left hemiparesis No
125 Kanbayashi 2016 [22] M 77 Yes No NA Yes Yes No Unconscious Hemiparesis Yes
M 15 Yes Yes NA No No No Conscious No No
M 45 No No NA No No No Conscious No No
M 38 No No NA Yes No No Conscious No No
F 61 No No NA Yes No No Conscious No No
F 83 No No NA Yes No No Conscious No No
126 Karasu 2022 [152] M 11 No No <1 Yes Yes Yes Unconscious No No
M 6 No No <1 No Yes Yes Unconscious No No
127 Ogul 2022 [153] M 55 Yes Yes NA NA NA NA NA NA NA
M 62 Yes No NA NA NA NA NA NA NA
M 77 Yes No NA NA NA NA NA NA NA
M 68 Yes No NA NA NA NA NA NA NA
M 80 Yes No NA NA NA NA NA NA NA
M 58 Yes No NA NA NA NA NA NA NA
M 69 Yes No NA NA NA NA NA NA NA
F 72 Yes No NA NA NA NA NA NA NA
F 81 No No NA NA NA NA NA NA NA
F 54 No No NA NA NA NA NA NA NA
F 66 No No NA NA NA NA NA NA NA
128 Osborn 2010 [13] F 82 No No <1 Yes Yes No Conscious NA No
F 52 No No <1 Yes Yes No Conscious NA No
F 44 No No <1 Yes Yes No Conscious NA No
F 45 No No <1 No Yes No Unconscious NA No
F 70 No No <1 No Yes No Conscious NA No
F 49 No No <1 No Yes No Conscious NA No
F 72 No No <1 No Yes No Conscious NA No
F 63 Yes No <1 Yes Yes No Unconscious NA No
F 93 No Yes <1 Yes Yes No Conscious NA No
F 71 No No <1 No Yes No Conscious NA Yes
F 44 No No <1 No Yes No Conscious NA No
F 48 No No <1 No Yes No Conscious NA No
F 49 Yes No <1 Yes Yes No Unconscious NA No
F 62 Yes No <1 No Yes No Conscious NA No
F 31 Yes Yes <1 No Yes No Conscious NA No
M 47 Yes No <1 No Yes No Conscious NA No
M 88 Yes No <1 No Yes No Conscious NA No
M 77 No Yes <1 No Yes No Conscious NA No
M 61 No No <1 No No No Conscious NA No
M 65 No No <1 No No No Conscious NA No
M 50 No No <1 No No No Conscious NA No
M 34 No No <1 No No No Conscious NA No
M 41 Yes No <1 No No No Conscious NA No
M 59 No No <1 No No No Conscious NA No
M 77 Yes No <1 No No No Conscious NA No
M 82 Yes No <1 No No Yes Conscious NA No
M 28 No No <1 No No No Conscious NA No
M 72 No No <1 No No No Conscious NA No
M 62 No No <1 No No No Conscious NA No
M 66 No No <1 No No No Conscious NA No
M 93 No No <1 No No No Conscious NA No
M 71 No No <1 No No No Conscious NA No
NA NA No No <1 No No No Conscious NA No
NA NA No No <1 No No No Conscious NA No
NA NA No No <1 No No No Conscious NA No
NA NA No No <1 No No No Conscious NA No
NA NA No No <1 No No No Conscious NA No
129 Legriel 2014 [154] F 83 Yes No <1 No Yes No Unconscious Left hemiparesis No
F 67 No No <1 No Yes No Unconscious No No
F 72 Yes No <1 Yes Yes No Unconscious Left hemiparesis No
130 Shah 2018 [21] M 55 Yes No >1 Yes Yes No Conscious No No
M 67 No No >1 Yes Yes No Conscious No No
M 71 No Yes >1 Yes Yes No Unconscious Motor deficit No
M 71 Yes No >1 Yes Yes No Conscious Motor deficit Yes
M 81 Yes Yes >1 Yes Yes No Conscious No Yes
M 76 Yes Yes >1 Yes Yes No Conscious No No
M 62 No No >1 Yes Yes No Conscious No No
F 43 Yes No >1 Yes Yes No Conscious Motor deficit No
F 57 No No >1 Yes No No Conscious No No
F 89 No No >1 Yes Yes No Conscious No No
F 52 Yes No >1 Yes Yes No Conscious No No
F 52 Yes No >1 Yes Yes No Conscious Motor deficit No

Following corresponding missing data exclusion, SPSS software version 26 was utilized for analyzing documented variables. The mean patient age was 59 years (Table 2), with 158 males constituting 57,7% of the total population. Among the population, 125 patients (46.8%) had hypertension, 56 (21.3%) had diabetes mellitus.

Table 2.

Demographic characteristics of the patients included in the study.

Feature Frequency
No. of Patients Total = 279 (M = 158, F = 121)
Mean Age (Range) 59 years (1 month - 93 years)
Co-morbidities Hypertension = 125/ 279 (46.8%)
Diabetes Mellitus = 56/ 279 (21.3%)

Key: M = males, F = females.

Regarding symptoms, the mean duration of symptoms was shorter than a day. Visual disturbance was reported in 116 patients (43,9%), altered mental state in 207 (77,2%), and memory impairment in 15 (5,3%). Additionally, 39 patients (14,6%) experienced slurred speech, motor deficits and dyscoordination were found in 79 patients (35.6%).

Ischemia was the cause in 249 cases (96.1%), with minor arterial disease in 2 (0.8%), stenosis in 3 (1.2%), perforation in 1 (0.4%), and other etiologies in 4 (1.5%). The paramedian thalamus alone was involved in 100 patients (38,5%), the midbrain alone in 22(7.8%), both paramedian thalamus and midbrain in 86 patients (33.1%) and multiple sites in 52 (20%). Thalamic blood supply distribution was documented in some article and the prevalence was analyzed as: 81% type I, 9,5% type IIa, and 4.8% type IIb, 4,8% type III (Table 3).

Table 3.

Clinical presentation, etiology, and the vascular supply to the thalamus.

Feature Frequency
Symptoms Visual Disturbance = 116 (43.9%)
Altered Mental State = 207 (77.2%)
Memory Deficit = 15 (5.3%)
Etiology Ischemia = 249 (96.1%)
Perforation = 1 (0.4%)
Stenosis = 3 (1.2%)
Minor Arterial Disease = 2 (0.8%)
Others = 4 (1.5%)
Sites Involved Paramedian thalamus alone:100 (38,5%)
Midbrain alone in 22 (7.8%)
Both paramedian thalamus and midbrain in 86 patients (33.1%)
Multiple sites in 52 (20%)
Variant of Thalamic Blood Supply Type I: 17 (81%)
Type IIa: 2 (9,5%)
Type IIb: 1 (4,8%)
Type III: 1 (4,8%)

Treatment-wise, 129 (85,4%) were managed conservatively, 17 patients (11,3%) underwent thrombolytic therapy, 4 (2.6%) underwent mechanical thrombectomy, and 1 (0.7%) received a combination of thrombolysis and mechanical thrombectomy (Table 4). Recovery rates post-exclusion of missing data showed complete recovery in 51 patients (24.8%), mild deficits in 110 (53.4%), severe deficits in 35 (17%), and death in 10 (4,9%). The mean recovery time was 11,5 days, and follow-up duration averaged 13.7 months.

Table 4.

Treatment options and follow-up.

Feature Frequency of single treatment modality
Therapy Conservative = 129 (85,4%)
Thrombolytic = 17 (11,3%)
Mechanical Thrombectomy = 4 (2.6%)
Combined* = 1 (0.7%)
Duration of Follow-up 1 to 55 months

Key: *Combination of thrombolysis and mechanical thrombectomy.

Statistical significance via the Pearson Chi-Square test with a (p-value<0,05) indicated several associations: (A) Patients with arterial hypertension and other cardiovascular diseases were inclined to develop severe deficits. (B) Higher risk of developing deficits was found with involvement of the paramedian thalamus more than the midbrain, which tremendously increases with involving both of them. (C) Patients presenting with anisocoria tend to have more deficits at the last follow up than those presented without it. (D) The best age group to recover completely is those between 41 and 50 years old, they have more complete recovery rat than any other group while the worst (Fig. 2). (E) altered consciousness at the time of administration tends to develop more severe symptoms.

Fig. 2.

Fig. 2

showing the outcomes according to the age groups.

4. Discussion

The classic categorization of the thalamic vascular supply delineated into four distinct territories—namely, anterior, paramedian, inferolateral, and posterior—showcases the complex and overlapping nature of this intricate vascular network within the brain. Gérard Percheron's pivotal 1973 discovery of the AOP introduced a fascinating anomaly within this established framework. Originating from segment one (P1) of the posterior cerebral artery (PCA) and observed in a minority of individuals (approximately 4%–12% of the population). The AOP uniquely supplies both sides of the paramedian thalamus and the upper midbrain through a single shared branch. This underscores the potential interplay and connectivity between the traditionally categorized thalamic territories, highlighting the significance of such rare anatomical variations in understanding the broader thalamic vascular supply [3,7].

Percheron identified four types of paramedian perforating arteries to the thalami (Fig. 3). The first variant (type I), involves the arteries emerging from the proximal segments of both PCAs on each side. The second type (type IIa), occurs when the arteries arise directly from the proximal segment of just one PCA. However, in some people, a single arterial trunk stems off the P1 segment of one of the PCAs and this trunk then divides to supply both thalami and the upper midbrain (type IIb); this is the AOP. Lastly, Type III is defined by the presence of a single arterial arc that links the proximal segments of both PCAs and from this arc, the paramedian thalamic perforating arteries arise [[7], [8], [9]]. In this study, we elucidated that the type I variant was most prevalent among 81% of the population, while type IIa was observed in only 9.5%. The rarest variant type IIb and type III, were found in just 4.8% of the individuals examined.

Fig. 3.

Fig. 3

Variants of the artery of Percheron.

Artery of Percheron occlusion results in a Percheron infarction, marked by specific bilateral paramedian thalamic distribution potentially alongside a mesencephalic distribution [10] (Fig. 4). With a relatively small ischemic lesion in the bilateral paramedian thalami, patients with Percheron infarction would present with an apparent life-threatening event comprising a massive ischemic infarction unless prompt intervention is administered [11,12]. Although likely underestimated, the prevalence of AOP is only 0.1% to 2% and 4% to 18% of all and thalamic strokes, respectively [3,13]. Similarly, Bogousslavsky analyzed 1000 consecutive patients sustaining their first episode of stroke and found that isolated thalamic infarcts, as a presenting feature, comprised 11% of all strokes in the posterior circulation while midbrain ischemic infarctions constituted 7% only [14]. In clinical practice and imaging, Percheron infarction must therefore be considered for its management. A few isolated cases have been reported in clinical practice in the previous decades [12,15]. N.A. Lazzaro et al. and Antonio Arauz et al. successively demonstrated the clinical and imaging aspects of Percheron infarction in 37 and 15 cases, respectively [3,13].

Fig. 4.

Fig. 4

Illustration of AOP with infarction from anatomical perspective.

Percheron infarction is a catastrophic cerebral vascular due to its impact on the blood supply to the paramedian thalamus and midbrain. Zhihua Xu et al., found that for patients with acute ischemic infarction, the occurrence of Percheron infarction was 0.27% [16]. Furthermore, researchers have demonstrated that 0.1%–0.4% of all patients with first episode of acute ischemic stroke sustained a Percheron infarction [3,17,18]. Our findings correlate with prior studies in the literature. Percheron infarction, although rare, usually presents with an apparent life-threatening event. However, the initial and subsequent symptoms are variable. Therefore, it is difficult for a neurologist to diagnose this condition in a timely manner with clinical observations alone. Moreover, there is no predilection to sex, race-ethnicity, and age in the reported cases of AOP stroke in the literature [18,19]. Our study findings, aligned with those of Garcia-Grimshaw et al., indicate that the characteristics of AOP stroke, including age distribution and gender predominance, may vary based on its etiology [19]. Much like Lin (P.C.), our research highlights a wide occurrence of AOP stroke across various age groups, with a notable concentration observed within the 30 to 70-year range [20]. Similar to our study, Stamm (B.J.) et al. and Suzuki (K.)et al. found a slight male predominance in patients with AOP stroke, aligning with the general trend observed in prior research [21,22].

In our study, the risk factors for Percheron infarction included hypertension, hyperhomocysteinemia, recent history of smoking, Diabetes Milletus (DM), and hyperlipidemia [3,23]. Specifically, among the patients examined, a substantial portion of the patients (46.5%) had pre-existing hypertension, with the majority being males (57,7%). Furthermore, DM was reported as a risk factor in 56 (21.3%) out of 280 patients.

Expanding on the risk factors, Saez et al. highlighted distinct patterns in thalamic strokes across different age groups. They found that in younger patients, cigarette smoking was the primary risk factor. In contrast, for individuals aged 45 and above, hypertension emerged as the predominant risk factor, attributed to its association with atherosclerosis. This observation signifies a shift in prominent risk factors with age, evident across various stroke types, including Percheron infarction [24].

Our study on Percheron infarction's etiology resonates with diverse perspectives from Arauz et al. and de la Cruz-Cosme et al. Arauz et al. identified small vessel disease as the primary cause [3], while de la Cruz-Cosme et al. emphasized a dual association with cardio-embolism and cardiovascular diseases (CVD), including conditions like stenosis [25]. These differences might influence the response to variations in region or race. Generally, the most common etiologic factors for Percheron infarction are small vessel disease and cardio-embolism [3,25].

Analyzing our findings, 96.1% of the cases were attributed to ischemia, indicating the multifaceted origins of this condition. Contributing factors encompassed perforation (0.4%), stenosis (1.2%), minor arterial disease (0.8%), CVD (including both cardio-embolism and other cardiac-related etiologies) and other factors (1.4%). These factors support the prevalent recognition of small vessel disease, CVD, and ischemia as primary etiological factors in Percheron infarction, highlighting the intricate pathways leading to its occurrence.

Lazzaro et al. identified four distinct ischemic infarction patterns arising from AOP occlusion based on their review of 37 patients, by evaluating clinical presentations and imaging findings. Among their observations, the most common pattern (43%) demonstrated damage to both the paramedian thalami and midbrain, while 38% of the patients exhibited isolated paramedian thalamic injury. In approximately 14% of the cases, damage extended to the anterior thalamic nuclei in addition to the paramedian thalami and upper midbrain. A rarer pattern (5%) depicted bilateral paramedian and anterior thalamic damage without midbrain involvement [13]. In our study, the primary site of infarctions was aligned with Lazzaro et al. findings [13], with the paramedian thalamus being the most affected (38,5%), followed by both midbrain and paramedian thalamus involvement (46.9%). Other injury sites were less prevalent, accounting for only 20%.

Patients experiencing Percheron infarction encounter diverse initial symptoms. Some individuals exhibit unremarkable and atypical symptoms, like dizziness. On one hand, these subtle symptoms might be overlooked by certain physicians; on the other hand, patients might not prioritize seeking adequate care. Consequently, these circumstances may extend the duration between symptom onset and seeking medical attention. Additionally, accurately determining the precise timing of the ischemic infarction poses a challenge when establishing the thrombolytic therapy window. Furthermore, subsequent symptoms manifest differently in each case. Hence, relying solely on clinical observations renders timely diagnosis impossible, highlighting the necessity for early recognition and immediate imaging for this condition [16].

When suspecting Percheron infarction, prioritizing magnetic resonance imaging-diffusion-weighted imaging (MRI-DWI) sequences becomes crucial due to the clinical relevance of apparent diffusion coefficient (ADC) maps and DWI in timing these infarctions [26,27]. Zhihua Xu et al. conducted a study, in 18 cases, that demonstrated a 100% positivity rate for detection and localization of Percheron infarction using MRI-DWI sequence, while computed tomography (CT) exhibited negative results in 50% of the patients [16]. This underscores the pivotal role of the DWI-MRI sequence in accurately diagnosing Percheron infarction. Nonetheless, we emphasize the importance of conducting a CT scan upon admission to exclude brain hemorrhage [26,27]. Instances reported by Cassourret G et al. and Mecbure Nalbantoglu et al. noted an AOP occlusion in normal initial brain MRIs, including DWI sequences [28,29]. Therefore, considering a second MRI may be warranted if a strong clinical suspicion of Percheron infarction persists [16].

Until now, the diagnosis of Percheron infarction depended on lesions in a specific bilateral paramedian thalamic distribution with or without a mesencephalic distribution based on brain imaging. Other etiologies, such as top basilar syndrome, deep cerebral vein thrombosis, Wernicke's encephalopathy, and glioma, should be considered [16]. Eva Guy Rodriguez et al. indicated that patient history, specific imaging characteristics, and the presence or absence of lesions outside the thalami aid in narrowing the differential diagnosis [30].

Percheron infarction results from occlusion within the AOP, which is usually not visible on standard magnetic resonance angiography (MRA) scans. Zhiua conducted a study that did not demonstrate the typical AOP image using MRA, but instead found that patients with Percheron infarction lacked the posterior communicating artery (PCoA) on several scans. This absence might suggest a lack of the primary collateralization [16]. However, it could also indicate natural variations in the circle of Willis. These variations could exacerbate symptoms when combined with internal carotid artery stenosis [31]. Some evidence also suggested that PcoA hypoplasia may contribute to a propensity for thalamic lacunar stroke due to its dominant role in providing collateral supply to the proximal PCA territory [32]. However, the presence of anatomic variations like the AOP and PcoA hypoplasia? Could potentially lead to a hemodynamic infarction due to inadequate regional collateral blood flow [16].

The clinical manifestations of AOP stroke exhibit significant variability, encompassing various symptoms like bilateral vertical gaze palsy (65%), memory impairment (58%), and coma (42%) [19,33], as well as other reported features such as hypersomnolence (29%), akinetic mutism and behavioral disorders like apathy, agitation, and aggressiveness [18,19,33]. When midbrain involvement occurs, the clinical presentation often includes hemiplegia, movement disorders, cerebellar ataxia, and oculomotor disturbances, in conjunction with the aforementioned triad [16,18].

Bithalamic stroke is closely linked to the thalamus, pivotal in sleep regulation and arousal maintenance. Interruption of noradrenergic and dopaminergic impulses from the ascending reticular activating system to the thalamus contributes to hypersomnolence post-stroke [34,35]. Bilateral thalamic infarcts result in more pronounced sleep-wake disturbances compared to unilateral infarcts [36], often leading to increased sleep needs [35,36].

In this study, 43.9% of our patients presented with visual disturbance and gaze palsy, which resonates with the common bilateral vertical gaze palsy described in previous studies [[34], [35], [36]]. Moreover, altered mental status was prevalent in 77.2% of our cases, a percentage consistent with the documented high incidence of coma in AOP strokes. However, memory deficits were observed in 5.3% of our cases, which is lower compared to the literature [19,33]. Furthermore, less frequent symptoms in our study motor deficits and dyscoordination were found in 79 patients (35.6%) and slurred speech (14.6%).

Understanding the relationship between imaging findings and the diverse clinical presentations of Percheron infarction could significantly improve its recognition and subsequent management. This analysis would play a crucial role in guiding both the diagnosis and the selection of appropriate treatment strategies for this condition, enhancing our comprehension of its complexities and potential complications.

Among cases managed for acute AOP infarction, our findings reveal notable associations with different treatment modalities. Thrombolytic therapy, specifically within a time window of <4.5 to 6 h, demonstrated a substantial link to achieving complete recovery and mild residual deficits during the final follow-up, affirming its status as the most effective treatment for acute AOP infarction [37]. This therapy aims to promote recanalization, aligning with the current goal of managing acute AOP occlusion [38]. Conversely, conservative management, observed in 85.4% of cases, also showed a significant portion achieving complete recovery [39]. A minimal percentage (2.6%) of the patients in our study underwent mechanical thrombectomy, which exhibited a significant correlation with mild residual deficits observed during the last follow-up. The prominence of thrombolytic therapy within the critical time window underscores its efficacy and highlights the importance of prompt intervention in treating infarctions involving the AOP [39].

5. Conclusion

In conclusion, our study sheds light on acute artery AOP infarction, a rare but clinically significant cerebrovascular condition. Through meticulous analysis of patient-level data from 130 papers involving 279 individuals, we have identified common clinical characteristics, etiological factors, and treatment outcomes. Our findings reveal a male predominance, with hypertension and diabetes mellitus being common comorbidities among the studied population. Symptomatically, visual disturbance, altered mental state, and motor deficits were prevalent presentations, with ischemia, particularly involving the paramedian thalamus, identified as the primary cause. Furthermore, we uncovered significant associations between various factors and the development of severe deficits, emphasizing the importance of early recognition for prompt management. Thrombolytic therapy within the critical time window emerged as the most effective treatment modality, showing significant associations with favorable outcomes. Overall, our study contributes to a deeper understanding of AOP infarction and provides insights for improved diagnosis and treatment strategies in clinical practice. Further research is warranted to validate these findings and explore additional aspects of this condition.

CRediT authorship contribution statement

Oday Atallah: Writing – review & editing, Writing – original draft, Supervision, Methodology, Conceptualization. Yasser F. Almealawy: Writing – review & editing, Writing – original draft. Arwa Salam Alabide: Writing – original draft, Formal analysis. Minaam Farooq: Writing – review & editing, Writing – original draft. Vivek Sanker: Writing – review & editing, Writing – original draft. Suraa N. Alrubaye: Writing – review & editing, Writing – original draft. Rami Darwazeh: Writing – review & editing, Writing – original draft. Wireko Andrew Awuah: Writing – review & editing, Writing – original draft. Toufik Abdul-Rahman: Writing – review & editing, Writing – original draft. Ahmed Muthana: Writing – review & editing, Writing – original draft. Aalaa Saleh: Writing – review & editing, Writing – original draft. Jack Wellington: Writing – original draft, Supervision. Amr Badary: Writing – review & editing, Writing – original draft, Methodology, Formal analysis.

Funding

This research was conducted without external funding or grants

Declaration of competing interest

None. (This research was conducted without external funding or grants).

References

  • 1.Musa J., Rahman M., Guy A., Kola E., Guy A., Hyseni F., Cobo A., Saliaj K., Bushati F., Ahmetgjekaj I. Artery of Percheron infarction: a case report and literature review. Radiol. Case Rep. 2021 Jun 1;16(6):1271–1275. doi: 10.1016/j.radcr.2021.02.059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Rajapakshe I., Senanayake B. Paramedian thalamic syndrome due to artery of Percheron infarction, effectively treated with early anticoagulation: a series of 3 cases. J. Neurol. Sci. 2019 Oct 15;405:62–63. [Google Scholar]
  • 3.Arauz A., Patiño-Rodríguez H.M., Vargas-González J.C., Arguelles-Morales N., Silos H., Ruiz-Franco A., Ochoa M.A. Clinical spectrum of artery of Percheron infarct: clinical–radiological correlations. J. Stroke Cerebrovasc. Dis. 2014 May 1;23(5):1083–1088. doi: 10.1016/j.jstrokecerebrovasdis.2013.09.011. [DOI] [PubMed] [Google Scholar]
  • 4.Almamun M., Suman A., Arshad S., Sanjeev Kumar S.J. A case of midbrain and thalamic infarction involving artery of Percheron. J. Clin. Med. 2015 Mar 3;4(3):369–374. doi: 10.3390/jcm4030369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Kichloo A., Jamal S.M., Zain E.A., Wani F., Vipparala N. Artery of Percheron infarction: a short review. J. Investig. Med. High Impact. Case Rep. 2019 Aug;7 doi: 10.1177/2324709619867355. 2324709619867355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Goico A., Mikesell T. Artery of Percheron infarction: a rare cause of somnolence in a patient with sepsis and atrial fibrillation. Oxf. Med. Case Rep. 2018 Jul;2018(7) doi: 10.1093/omcr/omy032. omy032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Percheron G. The anatomy of the arterial supply of the human thalamus and its use for the interpretation of the thalamic vascular pathology. Z. Neurol. 1973 Mar;205:1–3. doi: 10.1007/BF00315956. [DOI] [PubMed] [Google Scholar]
  • 8.Percheron G. Arteries of the human thalamus. I. Artery and polar thalamic territory of the posterior communicating artery. Rev. Neurol. 1976 May 1;132(5):297–307. [PubMed] [Google Scholar]
  • 9.Percheron G. Arteries of the human thalamus. II. Arteries and paramedian thalamic territory of the communicating basilar artery. Rev. Neurol. 1976 May 1;132(5):309–324. [PubMed] [Google Scholar]
  • 10.Rangel-Castilla L., Gasco J., Thompson B., Salinas P. Bilateral paramedian thalamic and mesencephalic infarcts after basilar tip aneurysm coiling: role of the artery of Percheron. Neurocirugia. 2009 Jan 1;20(3):288–293. doi: 10.1016/s1130-1473(09)70171-x. [DOI] [PubMed] [Google Scholar]
  • 11.Wells M., Jacques R., Odasso M.M. Thalamic infarct presenting as catastrophic life-threatening event in an older adult. Aging Clin. Exp. Res. 2011 Aug;23:320–322. doi: 10.1007/BF03337758. [DOI] [PubMed] [Google Scholar]
  • 12.Gupta S., Fernandez D., Siddiqui A., Lin J.P., Garside L., Lim M. Thalamic infarct presenting as apparent life-threatening event in infants. Acta Paediatr. 2009 Dec;98(12):2002–2005. doi: 10.1111/j.1651-2227.2009.01491.x. [DOI] [PubMed] [Google Scholar]
  • 13.Lazzaro N.A., Wright B., Castillo M., Fischbein N.J., Glastonbury C.M., Hildenbrand P., Wiggins R.H., Quigley E.P., Osborn A.G. Artery of percheron infarction: imaging patterns and clinical spectrum. Am. J. Neuroradiol. 2010 Aug 1;31(7):1283–1289. doi: 10.3174/ajnr.A2044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Bogousslavsky J., Van Melle G., Regli F. The Lausanne stroke registry: analysis of 1,000 consecutive patients with first stroke. Stroke. 1988 Sep;19(9):1083–1092. doi: 10.1161/01.str.19.9.1083. [DOI] [PubMed] [Google Scholar]
  • 15.Alemdar M. Hyperthermia associated with bilateral mesencephalothalamic infarction. J. Stroke Cerebrovasc. Dis. 2012 Nov 1;21(8) doi: 10.1016/j.jstrokecerebrovasdis.2011.08.003. 907-e13. [DOI] [PubMed] [Google Scholar]
  • 16.Xu Z., Sun L., Duan Y., Zhang J., Zhang M., Cai X. Assessment of Percheron infarction in images and clinical findings. J. Neurol. Sci. 2017 Dec 15;383:87–92. doi: 10.1016/j.jns.2017.10.033. [DOI] [PubMed] [Google Scholar]
  • 17.Slamia B., Jemaa H.B., Benammou S., Tlili-Graiess K. Occlusion of the artery of percheron: clinical and neuroimaging correlation. J. Neuroradiol. 2008 Oct 1;35(4):244–245. doi: 10.1016/j.neurad.2008.02.001. [DOI] [PubMed] [Google Scholar]
  • 18.Agarwal N., Tolia A., Hansberry D.R., Duffis E.J., Barrese J.C., Gandhi C.D., Prestigiacomo C.J. Current differential diagnoses and treatment options of vascular occlusions presenting as bilateral thalamic infarcts: a review of the literature. J. NeuroIntervent. Surg. 2013 Sep 1;5(5):419–425. doi: 10.1136/neurintsurg-2012-010352. [DOI] [PubMed] [Google Scholar]
  • 19.Garcia-Grimshaw M.A., Peschard-Franco M., Gutierrez-Manjarrez F.A., Garcia-Grimshaw M. Bilateral thalamic ischemic stroke secondary to occlusion of the artery of Percheron. Cureus. 2018 May 23;10(5) doi: 10.7759/cureus.2676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Lin P.C., Lee C.W., Liu H.M., Xiao F.R. Acute infarction in the artery of Percheron distribution during cerebral angiography: a case report and literature review. J. Radiol. Case Rep. 2018 Jul;12(7):1. doi: 10.3941/jrcr.v12i7.3318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Stamm B.J., Lineback C.M., Skolarus L.E., Morgenstern L.B., Shah G.V. Artery of Percheron infarct: 12 cases and their complex clinical courses. Neurohospitalist. 2018 Jul;8(3):141–145. doi: 10.1177/1941874417748543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Suzuki K., Miyamoto T., Miyamoto M., Maeda H., Nokura K., Tohyama J., Hirata K., Shimizu T., Kanbayashi T. Hypocretin-1 levels in the cerebrospinal fluid of patients with Percheron artery infarction with or without midbrain involvement: a case series. Medicine. 2016 Jul;95(29) doi: 10.1097/MD.0000000000004281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Amin O.S., Zangana H.M., Hussein E.M., Ameen N.A. Bilateral infarction of paramedian thalami: a report of two cases of artery of Percheron occlusion and review of the literature. Case Rep. Dermatol. 2011 Jan 1;2011 doi: 10.1136/bcr.09.2010.3304. bcr0920103304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.del Mar Sáez de Ocariz M., Nader J.A., Santos J.A., Bautista M. Thalamic vascular lesions: risk factors and clinical course for infarcts and hemorrhages. Stroke. 1996 Sep;27(9):1530–1536. doi: 10.1161/01.str.27.9.1530. [DOI] [PubMed] [Google Scholar]
  • 25.de la Cruz-Cosme C., Marquez-Martinez M., Aguilar-Cuevas R., Romero-Acebal M., Valdivielso-Felices P. Percheron artery syndrome: variability in presentation and differential diagnosis. Rev. Neurol. 2011 Aug 1;53(4):193–200. [PubMed] [Google Scholar]
  • 26.Provenzale J.M., Stinnett S.S., Engelter S.T. Use of decrease in apparent diffusion coefficient values to predict infarct age. Emerg. Radiol. 2010 Sep;17:391–395. doi: 10.1007/s10140-010-0869-8. [DOI] [PubMed] [Google Scholar]
  • 27.Allen L.M., Hasso A.N., Handwerker J., Farid H. Sequence-specific MR imaging findings that are useful in dating ischemic stroke. Radiographics. 2012 Sep;32(5):1285–1297. doi: 10.1148/rg.325115760. [DOI] [PubMed] [Google Scholar]
  • 28.Cassourret G., Prunet B., Sbardella F., Bordes J., Maurin O., Boret H. Ischemic stroke of the artery of Percheron with normal initial MRI: a case report. Case Rep. Med. 2010 Jan 1;2010 doi: 10.1155/2010/425734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Nalbantoglu M., Ozturk-Tan O., Bayazıt N., Tayfun F. Percheron artery infarction in the differential diagnosis of acute confusional state with normal initial brain MRI. Acta Neurol. Belg. 2016 Mar;116(1):73–75. doi: 10.1007/s13760-015-0505-1. [DOI] [PubMed] [Google Scholar]
  • 30.Rodriguez E.G., Lee J.A. Bilateral thalamic infarcts due to occlusion of the artery of Percheron and discussion of the differential diagnosis of bilateral thalamic lesions. J. Radiol. Case Rep. 2013 Jul;7(7):7. doi: 10.3941/jrcr.v7i7.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Chuang Y.M., Liu C.Y., Pan P.J., Lin C.P. Posterior communicating artery hypoplasia as a risk factor for acute ischemic stroke in the absence of carotid artery occlusion. J. Clin. Neurosci. 2008 Dec 1;15(12):1376–1381. doi: 10.1016/j.jocn.2008.02.002. [DOI] [PubMed] [Google Scholar]
  • 32.Förster A., Nölte I., Wenz H., Al-Zghloul M., Kerl H.U., Brockmann M.A., Groden C. Anatomical variations in the posterior part of the circle of Willis and vascular pathology in bilateral thalamic infarction. J. Neuroimaging. 2014 Jul;24(4):325–330. doi: 10.1111/jon.12022. [DOI] [PubMed] [Google Scholar]
  • 33.Lamboley J.L., Le Moigne F., Have L., Tsouka G., Drouet A., Salamand P., Guilloton L. Artery of Percheron occlusion: value of MRI. A review of six cases. J. Radiol. 2011 Dec 1;92(12):1113–1121. doi: 10.1016/j.jradio.2011.08.007. [DOI] [PubMed] [Google Scholar]
  • 34.Bollu P.C., Pandey A., Pesala S.P., Nalleballe K. Sleepiness after stroke: case report and review of literature on hypersomnia as a result of stroke. Madridge J. Neurosci. 2017 Mar 28;1(1):4–6. [Google Scholar]
  • 35.Goyal M.K., Kumar G., Sahota P.K. Isolated hypersomnia due to bilateral thalamic infarcts. J. Stroke Cerebrovasc. Dis. 2012 Feb 1;21(2):146–147. doi: 10.1016/j.jstrokecerebrovasdis.2010.05.013. [DOI] [PubMed] [Google Scholar]
  • 36.Hermann D.M., Siccoli M., Brugger P., Wachter K., Mathis J., Achermann P., Bassetti C.L. Evolution of neurological, neuropsychological and sleep-wake disturbances after paramedian thalamic stroke. Stroke. 2008 Jan 1;39(1):62–68. doi: 10.1161/STROKEAHA.107.494955. [DOI] [PubMed] [Google Scholar]
  • 37.Santos M., Rodrigues A., Albuquerque A., Santos F., Bandeira A., Magalhães M., Banza M. Artery of Percheron ischaemic stroke: a classic presentation of a rare case. Eur. J. Case Rep. Intern. Med. 2021;8(12):1–3. doi: 10.12890/2021_003045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Powers W.J., Rabinstein A.A., Ackerson T., Adeoye O.M., Bambakidis N.C., Becker K., Biller J., Brown M., Demaerschalk B.M., Hoh B., Jauch E.C. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2019;50(12):e344–e418. doi: 10.1161/STR.0000000000000211. [DOI] [PubMed] [Google Scholar]
  • 39.Zhang B., Wang X., Gang C., Wang J. Acute percheron infarction: a precision learning. BMC Neurol. 2022 Dec;22(1):1–2. doi: 10.1186/s12883-022-02735-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Agrawal A., Anand K., Kumar P., Garg J. A case of artery of Percheron infarct: need for high clinical and radiological suspicion. Neurol. India. 2019 Jul 1;67(4):1126–1128. doi: 10.4103/0028-3886.266283. [DOI] [PubMed] [Google Scholar]
  • 41.Sharma A., Bande D., Matta A. A case of diagnostic difficulty: transient loss of consciousness in artery of Percheron infarct. Cureus. 2021 Jan 26;13(1) doi: 10.7759/cureus.12918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Matsumoto A., Hanayama H., Matsumoto H., Tomogane Y., Minami H., Masuda A., Yamaura I., Yoshida Y. A case of posterior cerebral artery occlusion that developed into an artery of Percheron infarction. Radiol. Case Rep. 2022 Sep 1;17(9):3046–3050. doi: 10.1016/j.radcr.2022.05.054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.da Paz Oliveira G., Truzzi G., Lima F.C., Coelho F.M. A rare differential diagnosis of excessive daytime sleepiness-artery of Percheron territory infarct. Sleep Sci. 2018 Jan;11(1):25. doi: 10.5935/1984-0063.20180006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Koutsouraki E., Xiromerisiou G., Costa V., Baloyannis S. Acute bilateral thalamic infarction as a cause of acute dementia and hypophonia after occlusion of the artery of Percheron. J. Neurol. Sci. 2009 Aug 15;283(1–2):175–177. doi: 10.1016/j.jns.2009.02.369. [DOI] [PubMed] [Google Scholar]
  • 45.Ranasinghe T., Boo S., Adcock A. Acute onset of hypersomnolence and aphasia secondary to an artery of percheron infarct and a proposed emergency room evaluation. Case Rep. Emerg. Med. 2019 Apr 8;2019 doi: 10.1155/2019/1260865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Martin A., Tryambake D. An artery of Percheron infarct with an unusual neurological presentation. Intern. Med. J. 2018 Nov 1;48(11):1407–1408. doi: 10.1111/imj.14088. [DOI] [PubMed] [Google Scholar]
  • 47.Shah A.R., Ali R. Artery of Percheron infarct-a diagnostic and prognostic conundrum! JPMA. 2018 Jan 1;68(1):123–126. [PubMed] [Google Scholar]
  • 48.Pujar R., Ravi S.L. Artery of Percheron infarct-a rare case report. J. Assoc. Physicians India. 2020 Jan;68(1):66. [Google Scholar]
  • 49.Murumkar V.S., Kulanthaivelu K., Goyal S., Biswas S. Artery of Percheron infarct-an unusual complication of tuberculous meningitis. Neurol. India. 2022 Sep 1;70(5):2331. doi: 10.4103/0028-3886.359159. [DOI] [PubMed] [Google Scholar]
  • 50.Morais J., Oliveira A.A., Burmester I., Pires O. Artery of Percheron infarct: a diagnostic challenge. BMJ Case Rep. CP. 2021 Apr 1;14(4) doi: 10.1136/bcr-2020-236189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Abukhairat S.M., Alyami H.S., Alshammaa F.A., Jamsheer F.A., Baeyti N.Y., Aljehani M.M., Al Ghadeeb M., Al Ghadeeb M. Artery of Percheron infarct: a rare case of stroke in pregnancy. Cureus. 2022 Oct 28;14(10) doi: 10.7759/cureus.30798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Lott R., III, Zonna X., Jose A.N., Shin J., Roemer M., Nasir A., Jose A.N. Artery of Percheron infarct: a rare case presentation and recovery. Cureus. 2023 Aug 24;15(8) doi: 10.7759/cureus.44033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Khanni J.L., Casale J.A., Koek A.Y., Espinosa P.S. Artery of Percheron infarct: an acute diagnostic challenge with a spectrum of clinical presentations. Cureus. 2018 Sep 10;10(9) doi: 10.7759/cureus.3276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Vinay B., Mohit M., Sudhir V. Artery of Percheron infarct: an unusual cause for non-awakening from anesthesia. Saudi J Anaesth. 2014 Nov 1;8:119. doi: 10.4103/1658-354X.144101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Niazi F., Naeem S.B. Artery of Percheron infarct: a rarity not to be missed. J. Coll. Phys. Surg. Pakistan. 2017 Sep 1;27(9):577–578. [PubMed] [Google Scholar]
  • 56.Badu-Boateng C., Jeyanesan D., Easaw J., Lloyd M. Artery of Percheron infarct: hiding in plain sight. Clin. Med. 2021 Jul;21(4) doi: 10.7861/clinmed.2021-0383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Kheiralla O.A. Artery of Percheron infarction a rare anatomical variant and a diagnostic challenge: case report. Radiol. Case Rep. 2021 Jan 1;16(1):22–29. doi: 10.1016/j.radcr.2020.10.032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Aryan S., Thakar S., Hegde A.S. Artery of Percheron infarction after endoscopic pituitary surgery. Acta Neurochir. 2016 Oct;158:1973–1975. doi: 10.1007/s00701-016-2925-y. [DOI] [PubMed] [Google Scholar]
  • 59.Zhou Y., Fox D., Anand A., Elhaj A., Kapoor A., Najibi F., Kim H., Weir R., Jayam-Trouth A. Artery of Percheron infarction as an unusual cause of Korsakoff’s syndrome. Case Rep. Neurol. Med. 2015 Oct;2015 doi: 10.1155/2015/927809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Pantovic A., Lepic T., Pasovski V., Krsmanovic Z., Raicevic R. Artery of Percheron infarction associated with COVID-19 in the young adult. J. Neuro-Oncol. 2021 Dec 1:1–3. doi: 10.1007/s13365-021-01020-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Beedkar A., Sonawale A. Artery of Percheron infarction in a patient with atrial fibrillation: a rare stroke syndrome. J. Assoc. Physicians India. 2017 Aug 1;65(8):111–112. [PubMed] [Google Scholar]
  • 62.Hamid M., Ahizoune A. Artery of Percheron infarction presented with isolated downgaze paralysis: a case report. Radiol. Case Rep. 2023 Sep 1;18(9):3157–3161. doi: 10.1016/j.radcr.2023.06.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Ranasinghe K.M., Herath H.M., Dissanayake D., Seneviratne M. Artery of Percheron infarction presenting as nuclear third nerve palsy and transient loss of consciousness: a case report. BMC Neurol. 2020 Dec;20:1–5. doi: 10.1186/s12883-020-01889-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Asavaaree C., Doyle C., Smithason S. Artery of Percheron infarction results in severe bradycardia: a case report. Surg. Neurol. Int. 2018;9 doi: 10.4103/sni.sni_254_18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Snyder H.E., Ali S., Sue J., Unsal A., Fong C., Deng Z. Artery of Percheron infarction with persistent amnesia: a case report of bilateral paramedian thalamic syndrome. BMC Neurol. 2020 Dec;20:1–6. doi: 10.1186/s12883-020-01949-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Ali A., Mellor S., Lapsia S. Artery of Percheron infarction. Br. J. Hosp. Med. 2019 Jul 2;80(7):412–413. doi: 10.12968/hmed.2019.80.7.412. [DOI] [PubMed] [Google Scholar]
  • 67.Vinod K.V., Kaaviya R., Arpita B. Artery of Percheron infarction. Ann. Neurosci. 2016 Jul 28;23(2):124–126. doi: 10.1159/000443570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Liu W.L., Lin S.H., Chiang S.Y., Lai C.C. Artery of Percheron infarction. Intern. Med. 2013;52(17):2007–2008. doi: 10.2169/internalmedicine.52.9500. [DOI] [PubMed] [Google Scholar]
  • 69.Shea Y.F., Lin O.Y., Chang R.S., Luk J.K. Artery of Percheron infarction. Hong Kong Med. J. 2012 Oct 1;18(5):446. [PubMed] [Google Scholar]
  • 70.Yu G.S., Kuo K.H., Chan L. Artery of Percheron infarction. Acta Neurol. Taiwanica. 2012 Jun 1;21(2):97–98. [PubMed] [Google Scholar]
  • 71.Donohoe C., Nia N.K., Carey P., Vemulapalli V. Artery of Percheron infarction: a case report of bilateral thalamic stroke presenting with acute encephalopathy. Case Rep. Neurol. Med. 2022 Mar 30;2022 doi: 10.1155/2022/8385841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Sandvig A., Lundberg S., Neuwirth J. Artery of Percheron infarction: a case report. J. Med. Case Rep. 2017 Dec;11(1):1–5. doi: 10.1186/s13256-017-1375-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Alaithan T.M., Almaramhi H.M., Felemban A.S., Alaithan A.M., Alharbi A. Artery of Percheron infarction: a rare but important cause of bilateral thalamic stroke. Cureus. 2023 Apr 3;15(4) doi: 10.7759/cureus.37054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Lamot U., Ribaric I., Popovic K.S. Artery of Percheron infarction: review of literature with a case report. Radiol. Oncol. 2015 Jun;49(2):141. doi: 10.2478/raon-2014-0037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.DiFrancesco J.C. Artery of Percheron ischaemic stroke revealed by brain MRI DWI/ADC sequences. Case Rep. Dermatol. 2017 Dec 2;2017 doi: 10.1136/bcr-2017-223092. bcr-2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Bajrami A., Zivelonghi C., Micheletti N., Cappellari M. Artery of Percheron stroke from carotid lesion. Neurol. Sci. 2021 Nov;42(11):4807–4808. doi: 10.1007/s10072-021-05511-9. [DOI] [PubMed] [Google Scholar]
  • 77.Phate N., Pawar T., Andhale A., Singh R.K., Talwar D., Acharya S., Shukla S., Kumar S., singh Sr RK. Artery of Percheron stroke: a case report with a diagnostic challenge. Cureus. 2022 Feb 5;14(2) doi: 10.7759/cureus.21939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Morelli N., Rota E., Nolli M., Guidetti D., Michieletti E. Artery of Percheron territory infarct due to bilateral carotid artery dissection: when anterior circulation supplies the posterior one. Neurol. Sci. 2019 Jan;40:213–215. doi: 10.1007/s10072-018-3574-0. [DOI] [PubMed] [Google Scholar]
  • 79.Pitts-Tucker T., Small J. Artery of Percheron: an unusual stroke presentation. Case Rep. Dermatol. 2018 Mar 28;2018 doi: 10.1136/bcr-2017-222185. bcr-2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Naldi A., Mirandola L., Di Liberto A., Cavallo R., Boghi A. Asynchronous bithalamic infarction in presence of artery of Percheron. Neurol. Sci. 2021 Oct;42(10):4353–4356. doi: 10.1007/s10072-021-05454-1. [DOI] [PubMed] [Google Scholar]
  • 81.Puri P.R., Sijapati A. Bilateral internuclear and internal ophthalmoplegia due to artery of Percheron infarction. Clin. Case Reports. 2017 Mar;5(3):280. doi: 10.1002/ccr3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Qian J., Wu C., Peng J., Liu H. Bilateral paramedian thalamic and midbrain infarction due to occlusion of the artery of percheron in an elderly male: a case report. Neurol. Sci. 2017 Jun;38:1123–1126. doi: 10.1007/s10072-017-2860-6. [DOI] [PubMed] [Google Scholar]
  • 83.Bhattarai H.B., Dahal S.R., Uprety M., Bhattarai M., Bhattarai A., Oli R., Devkota S., Sah S.K., Parajuli S. Bilateral thalamic infarct involving artery of Percheron: a case report. Ann. Med. Surg. 2023 Sep 1;85(9):4613–4618. doi: 10.1097/MS9.0000000000001092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Lizwan M., Sonu S.K. Bilateral thalamic infarction caused by artery of Percheron obstruction. BMJ Case Rep. 2023;16(1) doi: 10.1136/bcr-2022-253949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Shams A., Hussaini S.A., Ata F., Abdelhady M., Danjuma M. Bilateral thalamic infarction secondary to thrombosis of artery of Percheron. Cureus. 2021 Mar 4;13(3) doi: 10.7759/cureus.13707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Satei A.M., Rehman C.A., Munshi S., Rehman C.A. Bilateral thalamic stroke arising from an occlusion of the artery of Percheron: barriers to diagnosis, management, and recovery. Cureus. 2021 Nov 21;13(11) doi: 10.7759/cureus.19783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Jumean K., Arqoub A.A., Al Hadidi M.A., Hawatmeh A., Shaaban H. Bilateral thalamic stroke due to occlusion of the artery of Percheron in a patient with a patent foramen ovale. J. Nat. Sci. Biol. Med. 2016 Jan;7(1):109. doi: 10.4103/0976-9668.175108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.López-Serna R., González-Carmona P., López-Martínez M. Bilateral thalamic stroke due to occlusion of the artery of Percheron in a patient with patent foramen ovale: a case report. J. Med. Case Rep. 2009 Dec;3:1–4. doi: 10.4076/1752-1947-3-7392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Deprez F., Bosschaert P., Leysen X. Bitalamic acute stroke: artery of Percheron. J. Belgian Soc. Radiol. 2010 Apr 16;93(4) doi: 10.5334/jbr-btr.324. [DOI] [PubMed] [Google Scholar]
  • 90.Afana H.B., Abuhadrous N.M., Elsharkawy A.E. Bithalamic infarction (artery of Percheron occlusion) after anterior cervical discectomy and fusion. Case Rep. Neurol. Med. 2019 Mar 18;2019 doi: 10.1155/2019/9438089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Venkata S.A., Matchanov O., Adidam S., Jagroo J. Blepharospasm and Bradyphrenia with infarction of the artery of Percheron: a case report. Cureus. 2022 Nov 23;14(11) doi: 10.7759/cureus.31814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Xie X., Wang X., Yu J., Zhou X., Shi L., Zhou J., Wu Y., Chen Z., Zhang B., Li X., Yang B. Case report: artery of Percheron infarction as a rare complication during atrial fibrillation ablation. Front. Cardiovas. Med. 2022 Sep 13;9 doi: 10.3389/fcvm.2022.914123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Chen P., Hao M.M., Chen Y., Zhang H., Wang Z., Zhao B., Xue Y., Chai Y., Huang Y.F., Zhu J. Clinical analysis of bilateral thalamic infarction caused by Percheron artery occlusion. Neuropsychiatr. Dis. Treat. 2021 May 28:1707–1712. doi: 10.2147/NDT.S296685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Caruso P., Manganotti P., Moretti R. Complex neurological symptoms in bilateral thalamic stroke due to Percheron artery occlusion. Vasc. Health Risk Manag. 2016 Dec 22:11–14. doi: 10.2147/VHRM.S119395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.MacLellan A., Boyle K. Computed tomography perfusion abnormalities in bilateral thalamic infarction due to artery of percheron occlusion. J. Stroke Cerebrovasc. Dis. 2017 Aug 1;26(8) doi: 10.1016/j.jstrokecerebrovasdis.2017.05.017. e170–1. [DOI] [PubMed] [Google Scholar]
  • 96.Wei T.S., Hsu C.S., Lee Y.C., Chang S.T. Degeneration of paramedian nuclei in the thalamus induces Holmes tremor in a case of artery of Percheron infarction. Medicine. 2017 Nov;96(46) doi: 10.1097/MD.0000000000008633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Rivera-Lara L., Henninger N. Delayed sudden coma due to artery of percheron infarction. Arch. Neurol. 2011 Mar 14;68(3):386–387. doi: 10.1001/archneurol.2010.377. [DOI] [PubMed] [Google Scholar]
  • 98.Francioni V., Pirro F., D’Anna G., Cairo M., Appollonio I., Ferrarese C., Tremolizzo L. DWI/FLAIR mismatch during hyperacute infarction of the Percheron artery: time is thalamus! Case Rep. Neurol. 2020 Jun 15;12(1):127–130. doi: 10.1159/000506416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Donmez F.Y., Kural F., Akpinar B., Agildere M. Embolic infarct presented with bilateral thalamic lesions possibly initiated by an emboli to the artery of Percheron. Clin. Imaging. 2013 Mar 1;37(2):358–360. doi: 10.1016/j.clinimag.2012.04.019. [DOI] [PubMed] [Google Scholar]
  • 100.Hammersley D., Arora A., Dissanayake M., Sengupta N. Fluctuating drowsiness following cardiac catheterisation: artery of Percheron ischaemic stroke causing bilateral thalamic infarcts. Case Rep. Dermatol. 2017 Jan 2;2017 doi: 10.1136/bcr-2016-218035. bcr2016218035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Jalan P., Shrestha G. Infarction due to occlusion of artery of Percheron. Neurol. India. 2021 Nov 1;69(6):1901. doi: 10.4103/0028-3886.333521. [DOI] [PubMed] [Google Scholar]
  • 102.Kesserwani H., Kesserwani H.N. Intermittent vertical diplopia as a rare manifestation of a rare cerebral infarct: artery of Percheron ischemic infarct and sidelights on the phenotypic variability of thalamic ocular disorders. Cureus. 2021 Jan 5;13(1) doi: 10.7759/cureus.12499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Krampla W., Schmidbauer B., Hruby W. Ischaemic stroke of the artery of Percheron (2007: 10b) Eur. Radiol. 2008 Jan;18:192–194. doi: 10.1007/s00330-007-0615-0. [DOI] [PubMed] [Google Scholar]
  • 104.Kaur R., Singh P. Ischemic stroke due to occlusion of the artery of Percheron. Indian J. Crit. Care Med. 2013 Dec 1;20(4):251–252. doi: 10.4103/0972-5229.180052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Rissardo J.P., Caprara A.F. Isolated acute pseudobulbar palsy with infarction of artery of percheron: case report and literature review. Afr. Health Sci. 2021 Apr 16;21(1):166–171. doi: 10.4314/ahs.v21i1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Geng Y., Chen X., Song S., Dong M., Zhang L., Li Z. Magnetic resonance angiography validation of bilateral thalamic infarction induced by artery of Percheron occlusion: a case description. Quant. Imaging Med. Surg. 2023 Jan 1;13(1):502. doi: 10.21037/qims-22-389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Restel M., Graban A., Witkowski G., Ryglewicz D., Sienkiewicz-Jarosz H. Midbrain and bilateral paramedian thalamic stroke due to artery of Percheron occlusion. Neurol. Neurochir. Pol. 2016;50(3):180–184. doi: 10.1016/j.pjnns.2016.01.008. [DOI] [PubMed] [Google Scholar]
  • 108.Anderson C., O’Brien R. Occlusion of the artery of Percheron: an unusual cause of bilateral stroke. Case Rep. Dermatol. 2012 Nov 19;2012 doi: 10.1136/bcr-2012-007205. bcr2012007205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Weerasinghe W.S., Kularatne S.A., Lpmmk P. Para median thalamic syndrome due to occlusion of the artery of Percheron: a rare case of stroke. Ceylon Med. J. 2019 Mar 1;64(1) doi: 10.4038/cmj.v64i1.8835. 30–1. [DOI] [PubMed] [Google Scholar]
  • 110.Konar S., Nishanth S., Devi B. Rare consequence of pituitary apoplexy surgery: artery of percheron infarction. Asian J. Neurosurg. 2021 Sep;16(03):595–597. doi: 10.4103/ajns.AJNS_491_20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Mazek H., Sherif K., Suarez J., Wischmeyer J. The artery of Percheron infarction after coronary angiography. Case Rep. Cardiol. 2016 Jan 1;2016 doi: 10.1155/2016/2402604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Mbodji A.B., Faye I., Diop N.R., Ndiaye M. Weber’s syndrome revealing a Percheron artery infarction: A case report. Clin. Case Reports. 2023 Apr;11(4) doi: 10.1002/ccr3.7268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Duarte D., Monteiro A., Almeida J. When a hypersomnolent hemodialyzed patient actually has a rare stroke: a case of artery of Percheron infarction with paradoxical embolism. Neurologist. 2023;28(5):329–331. doi: 10.1097/NRL.0000000000000493. [DOI] [PubMed] [Google Scholar]
  • 114.Onder H. A rare case with artery of percheron infarction: a mysterious cause of reversible coma. J. Med. Sci. 2020 Sep 1;40(5):241. [Google Scholar]
  • 115.Raphaeli G., Liberman A., Gomori J.M., Steiner I. Acute bilateral paramedian thalamic infarcts after occlusion of the artery of Percheron. Neurology. 2006 Jan 10;66(1):E7. doi: 10.1212/01.wnl.0000191320.49534.7c. [DOI] [PubMed] [Google Scholar]
  • 116.Muñoz Quirland H., Lázaro González V. Infarto de la arteria de Percheron: reporte de un caso y revisión de la literatura. Argentinian J. Radiol. 2018 Apr 27;82(04):184–186. [Google Scholar]
  • 117.Park S.W., Song S.K., Kang S.Y., Kang J.H., Lee J.S. Bilateral Paramedian thalamic infarction due to occlusion of artery of Percheron. J. Korean Neurol. Assoc. 2013;35(02) 189–91.chan. [Google Scholar]
  • 118.Quilez F.B., Gros TO, Salvatierra L.F. Bilateral thalamic infarct due to occlusion of the artery of Percheron. Med. Int. 2011;35(6):398. doi: 10.1016/j.medin.2010.04.008. [DOI] [PubMed] [Google Scholar]
  • 119.Galnares-Olalde J.A., León-Mayorga Y., Halabe-Cherem J., Rubalcava-Ortega J., Alegría-Loyola M.A. Bilateral thalamic infarct secondary to Percheron’s artery occlusion. Med. Intern. México. 2018 Feb 27;34(1):157–161. [Google Scholar]
  • 120.Lee J.A. Bilateral thalamic infarcts due to occlusion of the artery of Percheron and discussion of the differential diagnosis of bilateral thalamic lesions. J. Radiol. Case Rep. 2013 Jul;7(7):7. doi: 10.3941/jrcr.v7i7.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Meštrović A., Raifi Z., Sruk A., Budišić M., Kalousek V., Roje Bedeković M., Budinčević H. Brain infarction in the artery of Percheron supply Area due to reversible cerebral vasoconstriction syndrome. Arch. Psychiatry Res. 2023 Feb 19;59(1):115–118. [Google Scholar]
  • 122.Starosiliz G., Caruso D., Manzi M., Ghirlanda M. Cerebrovascullar stroke in percheron artery area: paramedian thalamic infarct. Prensa Med. Argentina. 2002;89(8):709–713. [Google Scholar]
  • 123.Colosso G.Q., Law-Ye B. Excellent visualization of artery of Percheron in MR angiography associated with bilateral thalamic infarcts. Neurol. India. 2023 Mar 1;71(2):400. doi: 10.4103/0028-3886.375405. [DOI] [PubMed] [Google Scholar]
  • 124.Raina S., Thakur A., Sharma R., Sharma A. Hyperactive delirium and bilateral ptosis: bilateral thalamic infarcts due to artery of Percheron occlusion. J. Assoc. Physicians India. 2019 Dec 1;67(12):77–78. [PubMed] [Google Scholar]
  • 125.Schilling A., Stewart Z.E., Uceda A. Infarction of the territory of the artery of Percheron. Appl. Radiol. 2019 Mar 1;48(2):34–35. [Google Scholar]
  • 126.Peda B., Kotlęga D., Gołąb-Janowska M., Nowacki P. Neuropsychological symptoms and therapy in patient with a bilateral thalamic ischemic stroke due to the artery of Percheron territory infarct. Acta Neuropsychol. 2017 Oct 12;15(3):341–355. [Google Scholar]
  • 127.Yarmohammadi H., Carasca A., Yarmohammadi H., Hsu D.P. Patent foramen ovale associated with the unusual presentation of unilateral paramedian thalamic perforating artery infarction after embolic occlusion of ‘artery of Percheron’: case report and review of the literature. J. Neurointervent. Surg. 2011 Jun 1;3(2):156–159. doi: 10.1136/jnis.2010.003293. [DOI] [PubMed] [Google Scholar]
  • 128.Liu J., Xiao H., Hu Z. Percheron infarction: is it just a rare cerebrovascular variant or a forewarning of severe multiple posterior circulation infarcts. J. Stroke Cerebrovasc. Dis. 2019 Apr 1;28(4):e27–e29. doi: 10.1016/j.jstrokecerebrovasdis.2018.12.042. [DOI] [PubMed] [Google Scholar]
  • 129.Rangwala V., Yajnik K., Chhaya K., Chovatiya H., Desai S. Prolonged severe bradycardia in the artery of Percheron infarct. Ann. Indian Acad. Neurol. 2023;26(3):283–285. doi: 10.4103/aian.aian_947_22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Quetsch M., Nagiah S., Hedger S. Stroke masquerading as cardiac arrest: the artery of Percheron. BMJ Case Rep. CP. 2021 Jan 1;14(1) doi: 10.1136/bcr-2020-238681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Çetin F.E., Kumral E., Dere B. The clinical and cognitive spectrum of artery of Percheron infarction: 1-year follow-up. Can. J. Neurol. Sci. 2022 Nov;49(6):774–780. doi: 10.1017/cjn.2021.212. [DOI] [PubMed] [Google Scholar]
  • 132.Cotelli M.S., Civelli P., Tosana E., Turla M. Transient coma as Percheron’s artery stroke. J. Health Sci. 2019 May 22;9(2):118–122. [Google Scholar]
  • 133.Gunasekaran K., Sivakumar S., Thiruvarutchelvan K. A case of rare stroke syndrome admitted in intensive care unit. Artery Percheron Infarct. 2024;5(2):91–94. [Google Scholar]
  • 134.Felissi Y., Meziani S., Handis C., Hadjali H., Zireg H., Chalal Ra H.M., Morsli A. Acute infarction in the artery of Percheron territory during cerebral angiography: a case report. SVOA Neurol. 2023;4(5):130–133. [Google Scholar]
  • 135.Yadav S., Gupta D., Kalia A., Kuntal Y., Yadav N., Chhaba N., Chauhan P., Meel M., Patel P., Sharai V., Batra P. Artery of Percheron infarction. J. Mahatma Gandhi Univ. Med. Sci. Technol. 2022 Aug 31;7(1):26–28. [Google Scholar]
  • 136.Koh E.J., Gnanasegaran A.J., Chin M.L. 2024. Bilateral Symmetrical Thalamic Lesions: An Infarction Involving the Artery of Percheron. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Tharmathurai S., Wan Hitam W.H., Liza-Sharmini A.T. Bilateral thalamic infarction and double depressor palsy secondary to infarction of artery of Percheron: a case report. J. Clin. Res. Ophthalmol. 2018;5(1):002–004. [Google Scholar]
  • 138.Lee A., Im Moon H., Kwon H.K., Pyun S.B. Clinical features of an artery of Percheron infarction: a case report. Brain Neurorehabilitat. 2017 Mar 1;10(1) [Google Scholar]
  • 139.Fatih A.T., Turgay K.A., Şara H.İ., Çoban M.S., Durmaz M.S., Durmaz F.G. Infarction of Percheron artery: a rare case report. J. Surg. Med. 2019 Apr 28;3(4):338–340. [Google Scholar]
  • 140.De Silva C.M., Fonseka C.L., Singhapura S.D., Jayasekara J.M., Rajapaksha H., Dissanayake A.S., Pathirana K.D. 2024. The lady who went twenty years back in her life–a case of acute bilateral thalamic infarction due to artery of percheron involvement. [Google Scholar]
  • 141.Marco H.B., Lorenzo-Bosquet C., Alvarez-Sabin J., Hernandez-Vara J. Parkinsonism related to Percheron artery infarct. J. Neurol. Sci. 2017 Feb 15;373:21–22. doi: 10.1016/j.jns.2016.12.011. [DOI] [PubMed] [Google Scholar]
  • 142.Ravelo A., Pala V.K., Chandra R., Wright D. 2024. An Uncommon Cause Of Bradycardia: Artery Of Percheron Infarct (3005) [Google Scholar]
  • 143.Whalen D., Chiang C. 2024. A Case of Obtundation Resolved with tPA: Artery of Percheron Infarct (4936) [Google Scholar]
  • 144.Bain S.E., Hsieh D.T., Vezina L.G., Chang T. Bilateral paramedian thalamic and mesencephalic infarcts in a newborn due to occlusion of the artery of Percheron. J. Child Neurol. 2009 Feb;24(2):219–223. doi: 10.1177/0883073808322672. [DOI] [PubMed] [Google Scholar]
  • 145.Zhang B., Wang X., Gang C., Wang J. Acute percheron infarction: a precision learning. BMC Neurol. 2022 Dec;22(1):1–2. doi: 10.1186/s12883-022-02735-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Saida I.B., Saad H.B., Zghidi M., Ennouri E., Ettoumi R., Boussarsar M. Artery of Percheron stroke as an unusual cause of hypersomnia: a case series and a short literature review. Am. J. Mens Health. 2020 Jul;14(4) doi: 10.1177/1557988320938946. 1557988320938946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Agarwal S., Chancellor B., Howard J. 2024. Hypersomnolence and Horizontal Gaze Palsy in Artery of Percheron Infarcts: Clinical-Radiographic Correlates (P4. 367) [DOI] [PubMed] [Google Scholar]
  • 148.Kulshreshtha D., Maurya P.K., Chhirolya R., Singh A.K., Thacker A.K. Artery of percheron infarction: case reports and literature review. Int. J. Res. Med. Sci. 2017 Oct;5(10):4629. [Google Scholar]
  • 149.Macedo M., Reis D., Cerullo G., Florêncio A., Frias C., Aleluia L., Drago J., Nzwalo H., Fidalgo A.P. Stroke due to Percheron artery occlusion: description of a consecutive case series from southern Portugal. J. Neurosci. Rural Pract. 2022 Jan 5;13(01):151–154. doi: 10.1055/s-0041-1741485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Agarwal S., Chancellor B., Howard J. Clinical-radiographic correlates of artery of Percheron infarcts in a case series of 6 patients. J. Clin. Neurosci. 2019 Mar 1;61:266–268. doi: 10.1016/j.jocn.2018.11.030. [DOI] [PubMed] [Google Scholar]
  • 151.Li J., Ge J., Yang S., Yao G. Clinical review and analysis of artery of Percheron infarction. IBRO Neurosci. Rep. 2023;27(15):17–23. doi: 10.1016/j.ibneur.2023.04.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Yalcin K., Turanoglu H., Gencalp A., Demir M.K., Celen S.S., Zhumatayev S., Karasu G. Graft-versus-host disease and acute artery of Percheron infarction in pediatric patients. Indian J. Pediatr. 2022 Nov;89(11):1156. doi: 10.1007/s12098-022-04361-3. [DOI] [PubMed] [Google Scholar]
  • 153.Taydas O., Ogul Y., Ogul H. Association with clinic risk factors of Percheron artery infarction and magnetic resonance imaging involvement patterns. Acta Neurol. Belg. 2022 Apr;122(2):411–415. doi: 10.1007/s13760-021-01697-z. [DOI] [PubMed] [Google Scholar]
  • 154.Zappella N., Merceron S., Nifle C., Hilly-Ginoux J., Bruneel F., Troché G., Cordoliani Y.S., Bedos J.P., Pico F., Legriel S. Artery of Percheron infarction as an unusual cause of coma: three cases and literature review. Neurocrit. Care. 2014 Jun;20:494–501. doi: 10.1007/s12028-014-9962-2. [DOI] [PubMed] [Google Scholar]

Articles from eNeurologicalSci are provided here courtesy of Elsevier

RESOURCES