Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Jun 15;300(Pt 3):637–641. doi: 10.1042/bj3000637

Heterogeneity of caffeine- and bradykinin-sensitive Ca2+ stores in vascular endothelial cells.

W F Graier 1, S Simecek 1, D K Bowles 1, M Sturek 1
PMCID: PMC1138215  PMID: 8010945

Abstract

The filling state of Ca2+ stores in endothelial cells regulates Ca2+ entry. The functional relationship between the major Ca2+ stores [i.e. Ins(1,4,5)P3-sensitive (= bradykinin-sensitive stores, 'BsS') and caffeine-sensitive stores] is unknown. In pig right-coronary-artery endothelial cells, caffeine failed to release Ca2+ in 68% of the cells (quiet-responders), but increased bradykinin (Bk)-induced Ca2+ release 2.5-fold. In Bk-pre-stimulated cells, caffeine increased Ca2+ release upon a second stimulation with Bk 3.2-fold. In quiet-responders caffeine alone did not affect net Ca2+ storage, whereas Bk or caffeine followed by Bk decreased the intracellular Ca2+ pool to 45% and 15%, respectively. Blockade of the endoplasmic-reticulum Ca2+ pump by thapsigargin unmasked the effect of caffeine in quiet-responders, resulting in a transient increase in intracellular free Ca2+ concentration ([Ca2+]i). In 37% of the cells caffeine alone transiently increased [Ca2+]i and depleted BsS. This study suggests a heterogeneity in functional organization of endothelial Ca2+ stores. In quiet-responders, caffeine translocates Ca2+ towards the BsS, whereas in overt-responders caffeine empties the BsS.

Full text

PDF
637

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez J., Montero M., García-Sancho J. Cytochrome P-450 may link intracellular Ca2+ stores with plasma membrane Ca2+ influx. Biochem J. 1991 Feb 15;274(Pt 1):193–197. doi: 10.1042/bj2740193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bolton T. B., Lim S. P. Properties of calcium stores and transient outward currents in single smooth muscle cells of rabbit intestine. J Physiol. 1989 Feb;409:385–401. doi: 10.1113/jphysiol.1989.sp017504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buchan K. W., Martin W. Bradykinin induces elevations of cytosolic calcium through mobilisation of intracellular and extracellular pools in bovine aortic endothelial cells. Br J Pharmacol. 1991 Jan;102(1):35–40. doi: 10.1111/j.1476-5381.1991.tb12128.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen G., Cheung D. W. Pharmacological distinction of the hyperpolarization response to caffeine and acetylcholine in guinea-pig coronary endothelial cells. Eur J Pharmacol. 1992 Nov 13;223(1):33–38. doi: 10.1016/0014-2999(92)90815-l. [DOI] [PubMed] [Google Scholar]
  5. Chu A., Díaz-Muñoz M., Hawkes M. J., Brush K., Hamilton S. L. Ryanodine as a probe for the functional state of the skeletal muscle sarcoplasmic reticulum calcium release channel. Mol Pharmacol. 1990 May;37(5):735–741. [PubMed] [Google Scholar]
  6. Gericke M., Droogmans G., Nilius B. Thapsigargin discharges intracellular calcium stores and induces transmembrane currents in human endothelial cells. Pflugers Arch. 1993 Mar;422(6):552–557. doi: 10.1007/BF00374001. [DOI] [PubMed] [Google Scholar]
  7. Gosink E. C., Forsberg E. J. Effects of ATP and bradykinin on endothelial cell Ca2+ homeostasis and formation of cGMP and prostacyclin. Am J Physiol. 1993 Dec;265(6 Pt 1):C1620–C1629. doi: 10.1152/ajpcell.1993.265.6.C1620. [DOI] [PubMed] [Google Scholar]
  8. Graier W. F., Groschner K., Schmidt K., Kukovetz W. R. Increases in endothelial cyclic AMP levels amplify agonist-induced formation of endothelium-derived relaxing factor (EDRF). Biochem J. 1992 Dec 1;288(Pt 2):345–349. doi: 10.1042/bj2880345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Graier W. F., Kukovetz W. R., Groschner K. Cyclic AMP enhances agonist-induced Ca2+ entry into endothelial cells by activation of potassium channels and membrane hyperpolarization. Biochem J. 1993 Apr 1;291(Pt 1):263–267. doi: 10.1042/bj2910263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  11. Lesh R. E., Marks A. R., Somlyo A. V., Fleischer S., Somlyo A. P. Anti-ryanodine receptor antibody binding sites in vascular and endocardial endothelium. Circ Res. 1993 Feb;72(2):481–488. doi: 10.1161/01.res.72.2.481. [DOI] [PubMed] [Google Scholar]
  12. Lückhoff A., Zeh R., Busse R. Desensitization of the bradykinin-induced rise in intracellular free calcium in cultured endothelial cells. Pflugers Arch. 1988 Oct;412(6):654–658. doi: 10.1007/BF00583768. [DOI] [PubMed] [Google Scholar]
  13. Parekh A. B., Terlau H., Stühmer W. Depletion of InsP3 stores activates a Ca2+ and K+ current by means of a phosphatase and a diffusible messenger. Nature. 1993 Aug 26;364(6440):814–818. doi: 10.1038/364814a0. [DOI] [PubMed] [Google Scholar]
  14. Parker I., Ivorra I. Caffeine inhibits inositol trisphosphate-mediated liberation of intracellular calcium in Xenopus oocytes. J Physiol. 1991 Feb;433:229–240. doi: 10.1113/jphysiol.1991.sp018423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Putney J. W., Jr Capacitative calcium entry revisited. Cell Calcium. 1990 Nov-Dec;11(10):611–624. doi: 10.1016/0143-4160(90)90016-n. [DOI] [PubMed] [Google Scholar]
  16. Schilling W. P., Cabello O. A., Rajan L. Depletion of the inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ store in vascular endothelial cells activates the agonist-sensitive Ca(2+)-influx pathway. Biochem J. 1992 Jun 1;284(Pt 2):521–530. doi: 10.1042/bj2840521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schilling W. P., Elliott S. J. Ca2+ signaling mechanisms of vascular endothelial cells and their role in oxidant-induced endothelial cell dysfunction. Am J Physiol. 1992 Jun;262(6 Pt 2):H1617–H1630. doi: 10.1152/ajpheart.1992.262.6.H1617. [DOI] [PubMed] [Google Scholar]
  18. Vaca L., Kunze D. L. Depletion and refilling of intracellular Ca2+ stores induce oscillations of Ca2+ current. Am J Physiol. 1993 Apr;264(4 Pt 2):H1319–H1322. doi: 10.1152/ajpheart.1993.264.4.H1319. [DOI] [PubMed] [Google Scholar]
  19. Wagner-Mann C., Sturek M. Endothelin mediates Ca influx and release in porcine coronary smooth muscle cells. Am J Physiol. 1991 Apr;260(4 Pt 1):C771–C777. doi: 10.1152/ajpcell.1991.260.4.C771. [DOI] [PubMed] [Google Scholar]
  20. Ziche M., Zawieja D., Hester R. K., Granger H. Calcium entry, mobilization, and extrusion in postcapillary venular endothelium exposed to bradykinin. Am J Physiol. 1993 Aug;265(2 Pt 2):H569–H580. doi: 10.1152/ajpheart.1993.265.2.H569. [DOI] [PubMed] [Google Scholar]
  21. Ziegelstein R. C., Spurgeon H. A., Pili R., Passaniti A., Cheng L., Corda S., Lakatta E. G., Capogrossi M. C. A functional ryanodine-sensitive intracellular Ca2+ store is present in vascular endothelial cells. Circ Res. 1994 Jan;74(1):151–156. doi: 10.1161/01.res.74.1.151. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES