Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Apr 15;299(Pt 2):527–531. doi: 10.1042/bj2990527

Substitutions for Glu-537 of beta-galactosidase from Escherichia coli cause large decreases in catalytic activity.

J Yuan 1, M Martinez-Bilbao 1, R E Huber 1
PMCID: PMC1138303  PMID: 7909660

Abstract

Glu-537 of beta-galactosidase (EC 3.2.1.23) was replaced by Asp, Gln and Val using synthetic oligonucleotides. The kcat values of the purified enzyme mixtures were reduced by about 100-fold for the Asp mutant, 30,000-60,000-fold for the Val mutant and 160,000-300,000-fold for the Gln mutant. The greatest differences in properties from the wild-type enzyme were found for the Asp-substituted enzyme: the Km values increased (from 0.12 to 0.42 mM for o-nitrophenyl beta-D-galactopyranoside), and from 0.04 to 0.37 mM for p-nitrophenyl beta-D-galactopyranoside), the Ki value for isopropyl beta-D-galactopyranoside increased (from 0.11 to 0.30 mM), the stability to heat decreased and methanol did not act as an acceptor. The enzymes with the other two substitutions had properties similar to those of the wild-type. For all three substituted enzymes, the inhibitory effects of the transition-state analogues (2-deoxy-2-amino-D-galactose and L-ribose) and the Mg2+ effects were similar to those of the normal enzyme. As all of the properties (except the kcat values) of the Gln- and Val-substituted enzyme preparations were similar to those of the wild-type enzyme, the activities in those preparations were probably due to the presence of a few wild-type enzyme molecules (formed from misreads) among the substituted enzymes. The enzymes with Gln and Val substitutions appear to be totally inactive. The results obtained support a recent suggestion that Glu-537 is an important catalytic residue of beta-galactosidase.

Full text

PDF
527

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cohen S. N., Chang A. C., Hsu L. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2110–2114. doi: 10.1073/pnas.69.8.2110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cupples C. G., Miller J. H., Huber R. E. Determination of the roles of Glu-461 in beta-galactosidase (Escherichia coli) using site-specific mutagenesis. J Biol Chem. 1990 Apr 5;265(10):5512–5518. [PubMed] [Google Scholar]
  3. Deschavanne P. J., Viratelle O. M., Yon J. M. Conformational adaptability of the active site of beta-galactosidase. Interaction of the enzyme with some substrate analogous effectors. J Biol Chem. 1978 Feb 10;253(3):833–837. [PubMed] [Google Scholar]
  4. Edelmann P., Gallant J. Mistranslation in E. coli. Cell. 1977 Jan;10(1):131–137. doi: 10.1016/0092-8674(77)90147-7. [DOI] [PubMed] [Google Scholar]
  5. Gebler J. C., Aebersold R., Withers S. G. Glu-537, not Glu-461, is the nucleophile in the active site of (lac Z) beta-galactosidase from Escherichia coli. J Biol Chem. 1992 Jun 5;267(16):11126–11130. [PubMed] [Google Scholar]
  6. Herrchen M., Legler G. Identification of an essential carboxylate group at the active site of lacZ beta-galactosidase from Escherichia coli. Eur J Biochem. 1984 Feb 1;138(3):527–531. doi: 10.1111/j.1432-1033.1984.tb07947.x. [DOI] [PubMed] [Google Scholar]
  7. Huber R. E., Brockbank R. L. Strong inhibitory effect of furanoses and sugar lactones on beta-galactosidase Escherichia coli. Biochemistry. 1987 Mar 24;26(6):1526–1531. doi: 10.1021/bi00380a005. [DOI] [PubMed] [Google Scholar]
  8. Huber R. E., Gaunt M. T. The inhibition of beta-galactosidase (Escherichia coli) by amino sugars and amino alcohols. Can J Biochem. 1982 Jun;60(6):608–612. doi: 10.1139/o82-075. [DOI] [PubMed] [Google Scholar]
  9. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  10. Martinez-Bilbao M., Holdsworth R. E., Edwards L. A., Huber R. E. A highly reactive beta-galactosidase (Escherichia coli) resulting from a substitution of an aspartic acid for Gly-794. J Biol Chem. 1991 Mar 15;266(8):4979–4986. [PubMed] [Google Scholar]
  11. Ring M., Armitage I. M., Huber R. E. m-Fluorotyrosine substitution in beta-galactosidase; evidence for the existence of a catalytically active tyrosine. Biochem Biophys Res Commun. 1985 Sep 16;131(2):675–680. doi: 10.1016/0006-291x(85)91290-2. [DOI] [PubMed] [Google Scholar]
  12. Ring M., Bader D. E., Huber R. E. Site-directed mutagenesis of beta-galactosidase (E. coli) reveals that tyr-503 is essential for activity. Biochem Biophys Res Commun. 1988 May 16;152(3):1050–1055. doi: 10.1016/s0006-291x(88)80390-5. [DOI] [PubMed] [Google Scholar]
  13. Ring M., Huber R. E. Multiple replacements establish the importance of tyrosine-503 in beta-galactosidase (Escherichia coli). Arch Biochem Biophys. 1990 Dec;283(2):342–350. doi: 10.1016/0003-9861(90)90652-f. [DOI] [PubMed] [Google Scholar]
  14. Shifrin S., Hunn G. Effect of alcohols on the enzymatic activity and subunit association of beta-galactosidase. Arch Biochem Biophys. 1969 Mar;130(1):530–535. doi: 10.1016/0003-9861(69)90066-6. [DOI] [PubMed] [Google Scholar]
  15. Viratelle O., Tenu J. P., Garnier J., Yon J. A preliminary study of the nucleophilic competition in beta-galactosidase catalyzed reactions. Biochem Biophys Res Commun. 1969 Dec 4;37(6):1036–1041. doi: 10.1016/0006-291x(69)90236-8. [DOI] [PubMed] [Google Scholar]
  16. Vogelstein B., Gillespie D. Preparative and analytical purification of DNA from agarose. Proc Natl Acad Sci U S A. 1979 Feb;76(2):615–619. doi: 10.1073/pnas.76.2.615. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES