ABSTRACT
Cancer genomic studies have identified frequent mutations in subunits of the SWI/SNF chromatin remodeling complex including SMARCA4 in non-small cell lung cancer with a frequency of up to 33% in advanced stage disease, making it the most frequently mutated complex in lung cancer. We and others have identified SMARCA2 to be synthetic lethal to SMARCA4, indicating SMARCA2 is a high value therapeutic target. Here, we disclose the discovery and characterization of potent, selective and orally bioavailable Cereblon-based SMARCA2 PROTACs. Biochemically, YDR1 and YD54 are potent SMARCA2 degraders with an average DC 50 of 7.7nM and 3.5nM respectively in SMARCA4 mutant lung cancer cells. Phenotypically, both YDR1 and YD54 selectively inhibited growth of SMARCA4 mutant cancer cells. Further, we showed anti-tumor growth inhibitory activity of YDR1 and YD54 in SMARCA4 mutant xenograft models of lung cancer. Finally, we show that YDR1 and YD54 synergize with the KRAS G12C inhibitor sotorasib to inhibit growth of SMARCA4 and KRAS G12C co-mutant lung cancer cells. These findings provide additional evidence for the utility of single agent or combination regimens containing SMARCA2 PROTACs as synthetic lethal therapeutics against SMARCA4 mutant cancers.
Full Text Availability
The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.