Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Aug 27:2024.08.27.609898. [Version 1] doi: 10.1101/2024.08.27.609898

Bioorthogonal labeling of chitin in pathogenic Candida species reveals biochemical mechanisms of hyphal growth and homeostasis

Caroline Williams, Bella R Carnahan, Stephen N Hyland, Catherine L Grimes
PMCID: PMC11383299  PMID: 39253419

Abstract

Pathogenic fungi rely on the cell wall component, chitin, for critical structural and immunological functions. Here a chitin labeling method to visualize the hyphal pathogenic response was developed. The data show that filamentous fungi, Candida albicans , transport N -acetylglucosamine (NAG) bio-orthogonal probes and incorporate them into the cell wall, indicating the probes utility for in vivo study of the morphological, pathogenic switch. As yeast reside in complex microenvironments, The data show that the opportunistic microbe C. albicans , has developed processes to utilize surrounding bacterial cell wall fragments to initiate the morphogenic switch. The probes are utilized for visualization of growth patterns of pathogenic fungi, providing insights into novel mechanisms for the development of antifungals. Remodeling chitin in fungi using NAG derivatives will advance yeast pathogenic studies.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES