Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Feb 15;258(1):211–220. doi: 10.1042/bj2580211

Monoclonal antibodies to the membrane domain of the human erythrocyte anion transport protein. Localization of the C-terminus of the protein to the cytoplasmic side of the red cell membrane and distribution of the protein in some human tissues.

S D Wainwright 1, M J Tanner 1, G E Martin 1, J E Yendle 1, C Holmes 1
PMCID: PMC1138343  PMID: 2930508

Abstract

(1) We have prepared murine monoclonal antibodies to the membrane domain of the human erythrocyte anion transport protein (band 3). (2) All of these antibodies react with regions of the protein located at the cytoplasmic surface of the red cell. (3) One of the antibodies reacts with an epitope present on a cytoplasmic loop of the protein located between the C-terminus and a point 168 amino acids from the C-terminus. The other antibodies recognize different epitopes on the C-terminal tail of the protein and the sequences likely to be involved in these epitopes are defined. (4) Our results show that the C-terminus of the red-cell anion transport protein is located on the cytoplasmic side of the red-cell membrane. (5) None of the antibodies inhibited sulphate exchange transport when introduced into resealed red-cell membranes; however, the bivalent form of one of the antibodies reduced the inhibitory potency of 4-acetamido-4'-isothiocyanatostilbene disulphonate on sulphate exchange transport in resealed erythrocyte membranes. (6) Immunostaining of human kidney sections with the antibodies showed strong staining of the basolateral membrane of some but not all of the epithelial cells of distal tubules and the initial connecting segment of collecting tubules. With human liver, only the haematopoeitic cells of fetal liver reacted with all the antibodies.

Full text

PDF
211

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boodhoo A., Reithmeier R. A. Characterization of matrix-bound Band 3, the anion transport protein from human erythrocyte membranes. J Biol Chem. 1984 Jan 25;259(2):785–790. [PubMed] [Google Scholar]
  2. Cox J. V., Lazarides E. Alternative primary structures in the transmembrane domain of the chicken erythroid anion transporter. Mol Cell Biol. 1988 Mar;8(3):1327–1335. doi: 10.1128/mcb.8.3.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DODGE J. T., MITCHELL C., HANAHAN D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963 Jan;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
  4. Drenckhahn D., Schlüter K., Allen D. P., Bennett V. Colocalization of band 3 with ankyrin and spectrin at the basal membrane of intercalated cells in the rat kidney. Science. 1985 Dec 13;230(4731):1287–1289. doi: 10.1126/science.2933809. [DOI] [PubMed] [Google Scholar]
  5. Evans P. R., Trickett L. P., Smith J. L., MacIver A. G., Tate D., Slapak M. Varying expression of major histocompatibility complex antigens on human renal endothelium and epithelium. Br J Exp Pathol. 1985 Feb;66(1):79–87. [PMC free article] [PubMed] [Google Scholar]
  6. Funder J., Wieth J. O. Chloride transport in human erythrocytes and ghosts: a quantitative comparison. J Physiol. 1976 Nov;262(3):679–698. doi: 10.1113/jphysiol.1976.sp011615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Greger R. Chloride transport in thick ascending limb, distal convolution, and collecting duct. Annu Rev Physiol. 1988;50:111–122. doi: 10.1146/annurev.ph.50.030188.000551. [DOI] [PubMed] [Google Scholar]
  8. Halestrap A. P., Denton R. M. Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by alpha-cyano-4-hydroxycinnamate. Biochem J. 1974 Feb;138(2):313–316. doi: 10.1042/bj1380313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hancock R. J., Harvey J., Evans P. R., Hodges E., Molnar J., Martin A., Lewis L., Cohen B., Laundy G., MacIver A. G. Expression of polymorphic B-cell antigens on human kidneys. Tissue Antigens. 1988 Apr;31(4):165–173. doi: 10.1111/j.1399-0039.1988.tb02078.x. [DOI] [PubMed] [Google Scholar]
  10. Hayashi R. Carboxypeptidase Y in sequence determination of peptides. Methods Enzymol. 1977;47:84–93. doi: 10.1016/0076-6879(77)47010-1. [DOI] [PubMed] [Google Scholar]
  11. Hazen-Martin D. J., Pasternack G., Hennigar R. A., Spicer S. S., Sens D. A. Immunocytochemistry of band 3 protein in kidney and other tissues of control and cystic fibrosis patients. Pediatr Res. 1987 Mar;21(3):235–237. doi: 10.1203/00006450-198703000-00005. [DOI] [PubMed] [Google Scholar]
  12. Holthöfer H., Schulte B. A., Pasternack G., Siegel G. J., Spicer S. S. Three distinct cell populations in rat kidney collecting duct. Am J Physiol. 1987 Aug;253(2 Pt 1):C323–C328. doi: 10.1152/ajpcell.1987.253.2.C323. [DOI] [PubMed] [Google Scholar]
  13. Jay D., Cantley L. Structural aspects of the red cell anion exchange protein. Annu Rev Biochem. 1986;55:511–538. doi: 10.1146/annurev.bi.55.070186.002455. [DOI] [PubMed] [Google Scholar]
  14. Jennings M. L., Anderson M. P., Monaghan R. Monoclonal antibodies against human erythrocyte band 3 protein. Localization of proteolytic cleavage sites and stilbenedisulfonate-binding lysine residues. J Biol Chem. 1986 Jul 5;261(19):9002–9010. [PubMed] [Google Scholar]
  15. Jennings M. L. Kinetics and mechanism of anion transport in red blood cells. Annu Rev Physiol. 1985;47:519–533. doi: 10.1146/annurev.ph.47.030185.002511. [DOI] [PubMed] [Google Scholar]
  16. Kawano Y., Okubo K., Tokunaga F., Miyata T., Iwanaga S., Hamasaki N. Localization of the pyridoxal phosphate binding site at the COOH-terminal region of erythrocyte band 3 protein. J Biol Chem. 1988 Jun 15;263(17):8232–8238. [PubMed] [Google Scholar]
  17. Kopito R. R., Lodish H. F. Primary structure and transmembrane orientation of the murine anion exchange protein. Nature. 1985 Jul 18;316(6025):234–238. doi: 10.1038/316234a0. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Lepke S., Passow H. Effects of incorporated trypsin on anion exchange and membrane proteins in human red blood cell ghosts. Biochim Biophys Acta. 1976 Dec 2;455(2):353–370. doi: 10.1016/0005-2736(76)90311-4. [DOI] [PubMed] [Google Scholar]
  20. Lieberman D. M., Nattriss M., Reithmeier R. A. Carboxypeptidase Y digestion of band 3, the anion transport protein of human erythrocyte membranes. Biochim Biophys Acta. 1987 Sep 18;903(1):37–47. doi: 10.1016/0005-2736(87)90153-2. [DOI] [PubMed] [Google Scholar]
  21. Lieberman D. M., Reithmeier R. A. Localization of the carboxyl terminus of Band 3 to the cytoplasmic side of the erythrocyte membrane using antibodies raised against a synthetic peptide. J Biol Chem. 1988 Jul 15;263(20):10022–10028. [PubMed] [Google Scholar]
  22. Macara I. G., Cantley L. C. Interactions between transport inhibitors at the anion binding sites of the band 3 dimer. Biochemistry. 1981 Sep 1;20(18):5095–5105. doi: 10.1021/bi00521a001. [DOI] [PubMed] [Google Scholar]
  23. McDougal J. S., Browning S. W., Kennedy S., Moore D. D. Immunodot assay for determining the isotype and light chain type of murine monoclonal antibodies in unconcentrated hybridoma culture supernates. J Immunol Methods. 1983 Oct 28;63(3):281–290. doi: 10.1016/s0022-1759(83)80001-5. [DOI] [PubMed] [Google Scholar]
  24. Nigg E. A., Bron C., Girardet M., Cherry R. J. Band 3-glycophorin A association in erythrocyte membrane demonstrated by combining protein diffusion measurements with antibody-induced cross-linking. Biochemistry. 1980 Apr 29;19(9):1887–1893. doi: 10.1021/bi00550a024. [DOI] [PubMed] [Google Scholar]
  25. Parsons S. F., Judson P. A., Anstee D. J. BRIC 18: a monoclonal antibody with a specificity related to the kell blood group system. J Immunogenet. 1982 Dec;9(6):377–380. doi: 10.1111/j.1744-313x.1982.tb00998.x. [DOI] [PubMed] [Google Scholar]
  26. Schuster V. L., Bonsib S. M., Jennings M. L. Two types of collecting duct mitochondria-rich (intercalated) cells: lectin and band 3 cytochemistry. Am J Physiol. 1986 Sep;251(3 Pt 1):C347–C355. doi: 10.1152/ajpcell.1986.251.3.C347. [DOI] [PubMed] [Google Scholar]
  27. Tanner M. J., Anstee D. J., Mallinson G., Ridgwell K., Martin P. G., Avent N. D., Parsons S. F. Effect of endoglycosidase F-peptidyl N-glycosidase F preparations on the surface components of the human erythrocyte. Carbohydr Res. 1988 Jul 15;178:203–212. doi: 10.1016/0008-6215(88)80112-5. [DOI] [PubMed] [Google Scholar]
  28. Tanner M. J., Martin P. G., High S. The complete amino acid sequence of the human erythrocyte membrane anion-transport protein deduced from the cDNA sequence. Biochem J. 1988 Dec 15;256(3):703–712. doi: 10.1042/bj2560703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tanner M. J., Williams D. G., Kyle D. The anion-transport protein of the human erythrocyte membrane. Studies on fragments produced by pepsin digestion. Biochem J. 1979 Nov 1;183(2):417–427. doi: 10.1042/bj1830417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Williams D. G., Jenkins R. E., Tanner M. J. Structure of the anion-transport protein of the human erythrocyte membrane. Further studies on the fragments produced by proteolytic digestion. Biochem J. 1979 Aug 1;181(2):477–493. doi: 10.1042/bj1810477. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES