Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Mar 15;258(3):765–768. doi: 10.1042/bj2580765

A thiono-beta-lactam substrate for the beta-lactamase II of Bacillus cereus. Evidence for direct interaction between the essential metal ion and substrate.

B P Murphy 1, R F Pratt 1
PMCID: PMC1138430  PMID: 2499308

Abstract

An 8-thionocephalosporin was shown to be a substrate of the beta-lactamase II of Bacillus cereus, a zinc metalloenzyme. Although it is a poorer substrate, as judged by the Kcat./Km parameter, than the corresponding 8-oxocephalosporin, the discrimination against sulphur decreased when the bivalent metal ion in the enzyme active site was varied in the order Mn2+ (the manganese enzyme catalysed the hydrolysis of the oxo compound but not that of the thiono compound), Zn2+, Co2+ and Cd2+. This result is taken as evidence for kinetically significant direct contact between the active-site metal ion of beta-lactamase II and the beta-lactam carbonyl heteroatom. No evidence was obtained, however, for accumulation of an intermediate with such co-ordination present.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin G. S., Galdes A., Hill H. A., Smith B. E., Waley S. G., Abraham E. P. Histidine residues of zinc ligands in beta-lactamase II. Biochem J. 1978 Nov 1;175(2):441–447. doi: 10.1042/bj1750441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baldwin G. S., Galdes A., Hill H. A., Waley S. G., Abraham E. P. A spectroscopic study of metal ion and ligand binding to beta-lactamase II. J Inorg Biochem. 1980 Nov;13(3):189–204. doi: 10.1016/s0162-0134(00)80068-9. [DOI] [PubMed] [Google Scholar]
  3. Baldwin G. S., Waley S. G., Abraham E. P. Identification of histidine residues that act as zinc ligands in beta-lactamase II by differential tritium exchange. Biochem J. 1979 Jun 1;179(3):459–463. doi: 10.1042/bj1790459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bartlett P. A., Spear K. L., Jacobsen N. E. A thioamide substrate of carboxypeptidase A. Biochemistry. 1982 Mar 30;21(7):1608–1611. doi: 10.1021/bi00536a022. [DOI] [PubMed] [Google Scholar]
  5. Beattie R. E., Elmore D. T., Williams C. H., Guthrie D. J. The behaviour of leucine aminopeptidase towards thionopeptides. Biochem J. 1987 Jul 1;245(1):285–288. doi: 10.1042/bj2450285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bicknell R., Knott-Hunziker V., Waley S. G. The pH-dependence of class B and class C beta-lactamases. Biochem J. 1983 Jul 1;213(1):61–66. doi: 10.1042/bj2130061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bicknell R., Schäffer A., Waley S. G., Auld D. S. Changes in the coordination geometry of the active-site metal during catalysis of benzylpenicillin hydrolysis by Bacillus cereus beta-lactamase II. Biochemistry. 1986 Nov 4;25(22):7208–7215. doi: 10.1021/bi00370a066. [DOI] [PubMed] [Google Scholar]
  8. Bicknell R., Waley S. G. Cryoenzymology of Bacillus cereus beta-lactamase II. Biochemistry. 1985 Nov 19;24(24):6876–6887. doi: 10.1021/bi00345a021. [DOI] [PubMed] [Google Scholar]
  9. Bond M. D., Holmquist B., Vallee B. L. Thioamide substrate probes of metal-substrate interactions in carboxypeptidase A catalysis. J Inorg Biochem. 1986 Oct-Nov;28(2-3):97–105. doi: 10.1016/0162-0134(86)80074-5. [DOI] [PubMed] [Google Scholar]
  10. Christianson D. W., David P. R., Lipscomb W. N. Mechanism of carboxypeptidase A: hydration of a ketonic substrate analogue. Proc Natl Acad Sci U S A. 1987 Mar;84(6):1512–1515. doi: 10.1073/pnas.84.6.1512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Davies R. B., Abraham E. P. Metal cofactor requirements of beta-lactamase II. Biochem J. 1974 Oct;143(1):129–135. doi: 10.1042/bj1430129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Davies R. B., Abraham E. P. Separation, purification and properties of beta-lactamase I and beta-lactamase II from Bacillus cereus 569/H/9. Biochem J. 1974 Oct;143(1):115–127. doi: 10.1042/bj1430115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Galdes A., Hill H. A., Baldwin G. S., Waley S. G., Abraham E. P. The 1H nuclear-magnetic-resonance spectroscopy of cobalt(II)-beta-lactamase II. Biochem J. 1980 Jun 1;187(3):789–795. doi: 10.1042/bj1870789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hangauer D. G., Monzingo A. F., Matthews B. W. An interactive computer graphics study of thermolysin-catalyzed peptide cleavage and inhibition by N-carboxymethyl dipeptides. Biochemistry. 1984 Nov 20;23(24):5730–5741. doi: 10.1021/bi00319a011. [DOI] [PubMed] [Google Scholar]
  15. Jaffe E. K., Cohn M. Diastereomers of the nucleoside phosphorothioates as probes of the structure of the metal nucleotide substrates and of the nucleotide binding site of yeast hexokinase. J Biol Chem. 1979 Nov 10;254(21):10839–10845. [PubMed] [Google Scholar]
  16. Little C., Emanuel E. L., Gagnon J., Waley S. G. Identification of an essential glutamic acid residue in beta-lactamase II from Bacillus cereus. Biochem J. 1986 Jan 15;233(2):465–469. doi: 10.1042/bj2330465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mock W. L., Chen J. T., Tsang J. W. Hydrolysis of a thiopeptide by cadmium carboxypeptidase A. Biochem Biophys Res Commun. 1981 Sep 16;102(1):389–396. doi: 10.1016/0006-291x(81)91533-3. [DOI] [PubMed] [Google Scholar]
  18. Murphy B. P., Pratt R. F. Evidence for an oxyanion hole in serine beta-lactamases and DD-peptidases. Biochem J. 1988 Dec 1;256(2):669–672. doi: 10.1042/bj2560669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sabath L. D., Finland M. Thiol-group binding of zinc to a beta-lactamase of Bacillus cereus: differential effects on enzyme activity with penicillin and cephalosporins as substrates. J Bacteriol. 1968 May;95(5):1513–1519. doi: 10.1128/jb.95.5.1513-1519.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sutton B. J., Artymiuk P. J., Cordero-Borboa A. E., Little C., Phillips D. C., Waley S. G. An X-ray-crystallographic study of beta-lactamase II from Bacillus cereus at 0.35 nm resolution. Biochem J. 1987 Nov 15;248(1):181–188. doi: 10.1042/bj2480181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES