Abstract
1. The pyrophosphatase activity in cytosolic and mitochondrial fractions of rat liver was 1.7 and 0.26 units/mg of protein respectively when assayed at 37 degrees C in the presence of physiological [Mg2+] (0.3 mM). 2. Approx. 80% of the mitochondrial pyrophosphatase was inaccessible to extramitochondrial PPi, of which 40% represented soluble matrix enzyme (0.38 unit/mg of matrix protein). 3. Ca2+ inhibited the soluble matrix enzyme; the effective K0.5 for inhibition increased as [Mg2+], an essential cofactor of the enzyme, increased. Measured values were 0.39, 1.15, 3.7, 8.3 and 12.5 microM at 0.04 mM-, 0.1 mM-, 0.3 mM-, 0.6 mM- and 1 mM-Mg2+ respectively. 4. The data were analysed by a kinetic model similar to that for yeast pyrophosphatase, which assumes the substrate to be MgPPi (Km 5 microM) with Mg2+ also activating at an additional site (K0.5 23 microM). Ca2+ inhibits through the formation of CaPPi, a strong competitive inhibitor (Ki 0.067 microM). 5. Heart mitochondria also contain a soluble matrix pyrophosphatase of similar activity to that of liver mitochondria and with the same sensitivity to [Ca2+]. 6. The data provide an explanation for the increase in mitochondrial PPi, mediated by Ca2+, which is responsible for the increase in matrix volume induced by gluconeogenic hormones [Davidson & Halestrap (1988) Biochem. J. 254, 379-384].
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armston A. E., Halestrap A. P., Scott R. D. The nature of the changes in liver mitochondrial function induced by glucagon treatment of rats. The effects of intramitochondrial volume, aging and benzyl alcohol. Biochim Biophys Acta. 1982 Sep 15;681(3):429–439. doi: 10.1016/0005-2728(82)90185-2. [DOI] [PubMed] [Google Scholar]
- Cooperman B. S. The mechanism of action of yeast inorganic pyrophosphatase. Methods Enzymol. 1982;87:526–548. doi: 10.1016/s0076-6879(82)87030-4. [DOI] [PubMed] [Google Scholar]
- Corkey B. E., Duszynski J., Rich T. L., Matschinsky B., Williamson J. R. Regulation of free and bound magnesium in rat hepatocytes and isolated mitochondria. J Biol Chem. 1986 Feb 25;261(6):2567–2574. [PubMed] [Google Scholar]
- Davidson A. M., Halestrap A. P. Inorganic pyrophosphate is located primarily in the mitochondria of the hepatocyte and increases in parallel with the decrease in light-scattering induced by gluconeogenic hormones, butyrate and ionophore A23187. Biochem J. 1988 Sep 1;254(2):379–384. doi: 10.1042/bj2540379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davidson A. M., Halestrap A. P. Liver mitochondrial pyrophosphate concentration is increased by Ca2+ and regulates the intramitochondrial volume and adenine nucleotide content. Biochem J. 1987 Sep 15;246(3):715–723. doi: 10.1042/bj2460715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denton R. M., McCormack J. G. Ca2+ transport by mammalian mitochondria and its role in hormone action. Am J Physiol. 1985 Dec;249(6 Pt 1):E543–E554. doi: 10.1152/ajpendo.1985.249.6.E543. [DOI] [PubMed] [Google Scholar]
- Denton R. M., McCormack J. G., Midgley P. J., Rutter G. A. Hormonal regulation of fluxes through pyruvate dehydrogenase and the citric acid cycle in mammalian tissues. Biochem Soc Symp. 1987;54:127–143. [PubMed] [Google Scholar]
- Exton J. H. Mechanisms involved in calcium-mobilizing agonist responses. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1986;20:211–262. [PubMed] [Google Scholar]
- Halestrap A. P., Dunlop J. L. Intramitochondrial regulation of fatty acid beta-oxidation occurs between flavoprotein and ubiquinone. A role for changes in the matrix volume. Biochem J. 1986 Nov 1;239(3):559–565. doi: 10.1042/bj2390559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halestrap A. P., Quinlan P. T., Whipps D. E., Armston A. E. Regulation of the mitochondrial matrix volume in vivo and in vitro. The role of calcium. Biochem J. 1986 Jun 15;236(3):779–787. doi: 10.1042/bj2360779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halestrap A. P. The nature of the stimulation of the respiratory chain of rat liver mitochondria by glucagon pretreatment of animals. Biochem J. 1982 Apr 15;204(1):37–47. doi: 10.1042/bj2040037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halestrap A. P. The regulation of the oxidation of fatty acids and other substrates in rat heart mitochondria by changes in the matrix volume induced by osmotic strength, valinomycin and Ca2+. Biochem J. 1987 May 15;244(1):159–164. doi: 10.1042/bj2440159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Irie M., Yabuta A., Kimura K., Shindo Y., Tomita K. Distribution and properties of alkaline pyrophosphatases of rat liver. J Biochem. 1970 Jan;67(1):47–58. doi: 10.1093/oxfordjournals.jbchem.a129233. [DOI] [PubMed] [Google Scholar]
- Jones B. M., Kemp R. B. Aggregation and electrophoretic mobility studies on dissociated cells. II. Effects of ADP and ATP. Exp Cell Res. 1970 Dec;63(2):301–308. doi: 10.1016/0014-4827(70)90217-x. [DOI] [PubMed] [Google Scholar]
- Martin A. D., Titheradge M. A. Stimulation of mitochondrial pyruvate metabolism and citrulline synthesis by dexamethasone. Effect of isolation and incubation media. Biochem J. 1984 Sep 1;222(2):379–387. doi: 10.1042/bj2220379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGivan J., Vadher M., Lacey J., Bradford N. Rat liver glutaminase. Regulation by reversible interaction with the mitochondrial membrane. Eur J Biochem. 1985 Apr 15;148(2):323–327. doi: 10.1111/j.1432-1033.1985.tb08842.x. [DOI] [PubMed] [Google Scholar]
- Midgley P. J., Rutter G. A., Thomas A. P., Denton R. M. Effects of Ca2+ and Mg2+ on the activity of pyruvate dehydrogenase phosphate phosphatase within toluene-permeabilized mitochondria. Biochem J. 1987 Jan 15;241(2):371–377. doi: 10.1042/bj2410371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moe O. A., Butler L. G. Yeast inorganic pyrophosphatase. 3. Kinetics of Ca 2+ inhibition. J Biol Chem. 1972 Nov 25;247(22):7315–7319. [PubMed] [Google Scholar]
- Moe O. A., Butler L. G. Yeast inorganic pyrophosphatase. II. Kinetics of Mg 2+ activation. J Biol Chem. 1972 Nov 25;247(22):7308–7314. [PubMed] [Google Scholar]
- Otto D. A., Cook G. A. Role of Ca2+ in regulating the level of mitochondrial pyrophosphate. Effect on butyrate oxidation. FEBS Lett. 1982 Dec 13;150(1):172–176. doi: 10.1016/0014-5793(82)81328-8. [DOI] [PubMed] [Google Scholar]
- Quinlan P. T., Halestrap A. P. The mechanism of the hormonal activation of respiration in isolated hepatocytes and its importance in the regulation of gluconeogenesis. Biochem J. 1986 Jun 15;236(3):789–800. doi: 10.1042/bj2360789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quinlan P. T., Thomas A. P., Armston A. E., Halestrap A. P. Measurement of the intramitochondrial volume in hepatocytes without cell disruption and its elevation by hormones and valinomycin. Biochem J. 1983 Aug 15;214(2):395–404. doi: 10.1042/bj2140395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ridlington J. W., Butler L. G. Yeast inorganic pyrophosphatase. I. Binding of pyrophosphate, metal ion, and metal ion-pyrophosphate complexes. J Biol Chem. 1972 Nov 25;247(22):7303–7307. [PubMed] [Google Scholar]
- Rutter G. A., Denton R. M. Regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+ ions within toluene-permeabilized rat heart mitochondria. Interactions with regulation by adenine nucleotides and NADH/NAD+ ratios. Biochem J. 1988 May 15;252(1):181–189. doi: 10.1042/bj2520181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shatton J. B., Shah H., Williams A., Morris H. P., Weinhouse S. Activities and properties of inorganic pyrophosphate in normal tissues and hepatic tumors of the rat. Cancer Res. 1981 May;41(5):1866–1872. [PubMed] [Google Scholar]
- Thomas A. P., Denton R. M. Use of toluene-permeabilized mitochondria to study the regulation of adipose tissue pyruvate dehydrogenase in situ. Further evidence that insulin acts through stimulation of pyruvate dehydrogenase phosphate phosphatase. Biochem J. 1986 Aug 15;238(1):93–101. doi: 10.1042/bj2380093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vargas A. M. Rapid preparation of metabolically active mitochondria from control and hormone-treated rat liver cells. J Biochem Biophys Methods. 1982 Dec;7(1):1–6. doi: 10.1016/0165-022x(82)90030-6. [DOI] [PubMed] [Google Scholar]
- Volk S. E., Baykov A. A., Duzhenko V. S., Avaeva S. M. Kinetic studies on the interactions of two forms of inorganic pyrophosphatase of heart mitochondria with physiological ligands. Eur J Biochem. 1982 Jun 15;125(1):215–220. doi: 10.1111/j.1432-1033.1982.tb06671.x. [DOI] [PubMed] [Google Scholar]
- Volk S. E., Baykov A. A., Kostenko E. B., Avaeva S. M. Isolation, subunit structure and localization of inorganic pyrophosphatase of heart and liver mitochondria. Biochim Biophys Acta. 1983 Apr 28;744(2):127–134. doi: 10.1016/0167-4838(83)90081-x. [DOI] [PubMed] [Google Scholar]
- Whipps D. E., Armston A. E., Pryor H. J., Halestrap A. P. Effects of glucagon and Ca2+ on the metabolism of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in isolated rat hepatocytes and plasma membranes. Biochem J. 1987 Feb 1;241(3):835–845. doi: 10.1042/bj2410835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whipps D. E., Halestrap A. P. Rat liver mitochondria prepared in mannitol media demonstrate increased mitochondrial volumes compared with mitochondria prepared in sucrose media. Relationship to the effect of glucagon on mitochondrial function. Biochem J. 1984 Jul 1;221(1):147–152. doi: 10.1042/bj2210147. [DOI] [PMC free article] [PubMed] [Google Scholar]