Abstract
The synthetic 1-34 fragment of human parathyroid hormone (1-34hPTH) stimulated glucose production in isolated rat hepatocytes. The effect of 1-34hPTH was dose-dependent and 10(10) M-1-34 hPTH elicited the maximum glucose output, which was approx. 80% of that by glucagon. Although 1-34hPTH induced a small increase in cyclic AMP production at concentrations higher than 10(-9) M, 10(-10) M-1-34hPTH induced the maximum glucose output without significant elevation of cyclic AMP. This is in contrast to the action of forskolin, which increased glucose output to the same extent as 10(-10) M-1-34hPTH by causing a 2-fold elevation of cyclic AMP. In addition to increasing cyclic AMP, 1-34hPTH caused an increase in cytoplasmic free calcium concentration ([Ca2+]c). When the effect of 1-34hPTH on [Ca2+]c was studied in aequorin-loaded cells, low concentrations of 1-34hPTH increased [Ca2+]c: the 1-34hPTH effect on [Ca2+]c was detected at as low as 10(-12) M and increased in a dose-dependent manner. 1-34hPTH increased [Ca2+]c even in the presence of 1 microM extracellular calcium, suggesting that PTH mobilizes calcium from an intracellular pool. In line with these observations, 1-34hPTH increased the production of inositol trisphosphate. These results suggest that: (1) PTH activates both cyclic AMP and calcium messenger systems and (2) PTH stimulates glycogenolysis mainly via the calcium messenger system.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berridge M. J., Dawson R. M., Downes C. P., Heslop J. P., Irvine R. F. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J. 1983 May 15;212(2):473–482. doi: 10.1042/bj2120473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borle A. B., Freudenrich C. C., Snowdowne K. W. A simple method for incorporating aequorin into mammalian cells. Am J Physiol. 1986 Aug;251(2 Pt 1):C323–C326. doi: 10.1152/ajpcell.1986.251.2.C323. [DOI] [PubMed] [Google Scholar]
- Canterbury J. M., Levy G., Ruiz E., Reiss E. Parathyroid hormone activation of adenylate cyclase in liver. Proc Soc Exp Biol Med. 1974 Nov;147(2):366–370. doi: 10.3181/00379727-147-38343. [DOI] [PubMed] [Google Scholar]
- Corvera S., Huerta-Bahena J., Pelton J. T., Hruby V. J., Trivedi D., García-Sáinz J. A. Metabolic effects and cyclic AMP levels produced by glucagon, (1-N alpha-Trinitrophenylhistidine,12-homoarginine)glucagon and forskolin in isolated rat hepatocytes. Biochim Biophys Acta. 1984 Aug 17;804(4):434–441. doi: 10.1016/0167-4889(84)90071-5. [DOI] [PubMed] [Google Scholar]
- D'Amour P., Segre G. V., Roth S. I., Potts J. T., Jr Analysis of parathyroid hormone and its fragments in rat tissues: chemical identification and microscopical localization. J Clin Invest. 1979 Jan;63(1):89–98. doi: 10.1172/JCI109283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dufau M. L., Watanabe K., Catt K. J. Stimulation of cyclic AMP production by the rat testis during incubation with hCG in vitro. Endocrinology. 1973 Jan;92(1):6–11. doi: 10.1210/endo-92-1-6. [DOI] [PubMed] [Google Scholar]
- Goligorsky M. S., Loftus D. J., Hruska K. A. Cytoplasmic calcium in individual proximal tubular cells in culture. Am J Physiol. 1986 Nov;251(5 Pt 2):F938–F944. doi: 10.1152/ajprenal.1986.251.5.F938. [DOI] [PubMed] [Google Scholar]
- Hruska K. A., Goligorsky M., Scoble J., Tsutsumi M., Westbrook S., Moskowitz D. Effects of parathyroid hormone on cytosolic calcium in renal proximal tubular primary cultures. Am J Physiol. 1986 Aug;251(2 Pt 2):F188–F198. doi: 10.1152/ajprenal.1986.251.2.F188. [DOI] [PubMed] [Google Scholar]
- Kojima I., Kojima K., Rasmussen H. Role of calcium and cAMP in the action of adrenocorticotropin on aldosterone secretion. J Biol Chem. 1985 Apr 10;260(7):4248–4256. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Litvin Y., PasMantier R., Fleischer N., Erlichman J. Hormonal activation of the cAMP-dependent protein kinases in AtT20 cells. Preferential activation of protein kinase I by corticotropin releasing factor, isoproterenol, and forskolin. J Biol Chem. 1984 Aug 25;259(16):10296–10302. [PubMed] [Google Scholar]
- Mauger J. P., Poggioli J., Guesdon F., Claret M. Noradrenaline, vasopressin and angiotensin increase Ca2+ influx by opening a common pool of Ca2+ channels in isolated rat liver cells. Biochem J. 1984 Jul 1;221(1):121–127. doi: 10.1042/bj2210121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mine T., Kojima I., Kimura S., Ogata E. Assessment of the role of Ca2+ mobilization from intracellular pool(s), using dantrolene, in the glycogenolytic action of alpha-adrenergic stimulation in perfused rat liver. Biochim Biophys Acta. 1987 Feb 18;927(2):229–234. doi: 10.1016/0167-4889(87)90139-x. [DOI] [PubMed] [Google Scholar]
- Mine T., Kojima I., Kimura S., Ogata E. Comparison of the changes in cytoplasmic free calcium concentration induced by phenylephrine, vasopressin and angiotensin II in hepatocytes. Biochem Biophys Res Commun. 1986 Oct 15;140(1):107–113. doi: 10.1016/0006-291x(86)91064-8. [DOI] [PubMed] [Google Scholar]
- Morgan J. P., Morgan K. G. Vascular smooth muscle: the first recorded Ca2+ transients. Pflugers Arch. 1982 Oct;395(1):75–77. doi: 10.1007/BF00584972. [DOI] [PubMed] [Google Scholar]
- Moxley M. A., Bell N. H., Wagle S. R., Allen D. O., Ashmore J. Parathyroid hormone stimulation of glucose and urea production in isolated liver cells. Am J Physiol. 1974 Nov;227(5):1058–1061. doi: 10.1152/ajplegacy.1974.227.5.1058. [DOI] [PubMed] [Google Scholar]
- Moyle W. R., Kong Y. C., Ramachandran J. Steroidogenesis and cyclic adenosine 3',5'-monophosphate accumulation in rat adrenal cells. Divergent effects of adrenocorticotropin and its o-nitrophenyl sulfenyl derivative. J Biol Chem. 1973 Apr 10;248(7):2409–2417. [PubMed] [Google Scholar]
- Perchellet J. P., Shanker G., Sharma R. Regulatory role of guanosine 3',5'-monophosphate in adrenocorticotropin hormone-induced steroidogenesis. Science. 1978 Jan 20;199(4326):311–312. doi: 10.1126/science.202028. [DOI] [PubMed] [Google Scholar]
- Rouleau M. F., Warshawsky H., Goltzman D. Parathyroid hormone binding in vivo to renal, hepatic, and skeletal tissues of the rat using a radioautographic approach. Endocrinology. 1986 Mar;118(3):919–931. doi: 10.1210/endo-118-3-919. [DOI] [PubMed] [Google Scholar]
- Segre G. V., Perkins A. S., Witters L. A., Potts J. t., Jr Metabolism of parathyroid hormone by isolated rat Kupffer cells and hepatocytes. J Clin Invest. 1981 Feb;67(2):449–457. doi: 10.1172/JCI110053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snowdowne K. W., Borle A. B. Changes in cytosolic ionized calcium induced by activators of secretion in GH3 cells. Am J Physiol. 1984 Feb;246(2 Pt 1):E198–E201. doi: 10.1152/ajpendo.1984.246.2.E198. [DOI] [PubMed] [Google Scholar]
- Yamaguchi D. T., Hahn T. J., Iida-Klein A., Kleeman C. R., Muallem S. Parathyroid hormone-activated calcium channels in an osteoblast-like clonal osteosarcoma cell line. cAMP-dependent and cAMP-independent calcium channels. J Biol Chem. 1987 Jun 5;262(16):7711–7718. [PubMed] [Google Scholar]