Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Apr 1;259(1):223–228. doi: 10.1042/bj2590223

Comparison of the inhibition of insulin release by activation of adenosine and alpha 2-adrenergic receptors in rat beta-cells.

G Bertrand 1, M Nenquin 1, J C Henquin 1
PMCID: PMC1138494  PMID: 2470346

Abstract

Rat islets were used to compare the mechanisms whereby adenosine and adrenaline inhibit insulin release. Adenosine (1 microM-2.5 mM) and its analogue N6(-)-phenylisopropyladenosine (L-PIA) (1 nM-10 microM) caused a concentration-dependent but incomplete (45-60%) inhibition of glucose-stimulated release. L-PIA was more potent than D-PIA [the N6(+) analogue], but much less than adrenaline, which caused nearly complete inhibition (85% at 0.1 microM). 8-Phenyltheophylline prevented the inhibitory effect of L-PIA and 50 microM-adenosine, but not that of 500 microM-adenosine or of adrenaline. In contrast, yohimbine selectively prevented the inhibition by adrenaline. Adenosine and L-PIA thus appear to exert their effects by activating membrane A1 receptors, whereas adrenaline acts on alpha 2-adrenergic receptors. Adenosine, L-PIA and adrenaline slightly inhibited 45Ca2+ efflux, 86Rb+ efflux and 45Ca2+ influx in glucose-stimulated islets. The inhibition of insulin release by adenosine or L-PIA was totally prevented by dibutyryl cyclic AMP, but was only attenuated when adenylate cyclase was activated by forskolin or when protein kinase C was stimulated by a phorbol ester. Adrenaline, on the other hand, inhibited release under these conditions. It is concluded that inhibition of adenylate cyclase, rather than direct changes in membrane K+ and Ca2+ permeabilities, underlies the inhibition of insulin release induced by activation of A1-receptors. The more complete inhibition mediated by alpha 2-adrenergic receptors appears to result from a second mechanism not triggered by adenosine.

Full text

PDF
223

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson A. Nucleoside-stimulated insulin production by isolated mouse pancreatic islets. Horm Metab Res Suppl. 1980;Suppl 10:14–19. [PubMed] [Google Scholar]
  2. Belardinelli L., Isenberg G. Isolated atrial myocytes: adenosine and acetylcholine increase potassium conductance. Am J Physiol. 1983 May;244(5):H734–H737. doi: 10.1152/ajpheart.1983.244.5.H734. [DOI] [PubMed] [Google Scholar]
  3. Bozem M., Nenquin M., Henquin J. C. The ionic, electrical, and secretory effects of protein kinase C activation in mouse pancreatic B-cells: studies with a phorbol ester. Endocrinology. 1987 Sep;121(3):1025–1033. doi: 10.1210/endo-121-3-1025. [DOI] [PubMed] [Google Scholar]
  4. Campbell I. L., Taylor K. W. Effects of adenosine, 2-deoxyadenosine and N6-phenylisopropyladenosine on rat islet function and metabolism. Biochem J. 1982 Jun 15;204(3):689–696. doi: 10.1042/bj2040689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chapal J., Loubatières-Mariani M. M., Petit P., Roye M. Evidence for an A2-subtype adenosine receptor on pancreatic glucagon secreting cells. Br J Pharmacol. 1985 Nov;86(3):565–569. doi: 10.1111/j.1476-5381.1985.tb08932.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clutter W. E., Rizza R. A., Gerich J. E., Cryer P. E. Regulation of glucose metabolism by sympathochromaffin catecholamines. Diabetes Metab Rev. 1988 Feb;4(1):1–15. doi: 10.1002/dmr.5610040104. [DOI] [PubMed] [Google Scholar]
  7. Dolphin A. C., Forda S. R., Scott R. H. Calcium-dependent currents in cultured rat dorsal root ganglion neurones are inhibited by an adenosine analogue. J Physiol. 1986 Apr;373:47–61. doi: 10.1113/jphysiol.1986.sp016034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Feldman J. M., Jackson T. B. Specificity of nucleotide-induced insulin secretion. Endocrinology. 1974 Feb;94(2):388–394. doi: 10.1210/endo-94-2-388. [DOI] [PubMed] [Google Scholar]
  9. Fredholm B. B., Dunwiddie T. V. How does adenosine inhibit transmitter release? Trends Pharmacol Sci. 1988 Apr;9(4):130–134. doi: 10.1016/0165-6147(88)90194-0. [DOI] [PubMed] [Google Scholar]
  10. Henquin J. C., Garcia M. C., Bozem M., Hermans M. P., Nenquin M. Muscarinic control of pancreatic B cell function involves sodium-dependent depolarization and calcium influx. Endocrinology. 1988 May;122(5):2134–2142. doi: 10.1210/endo-122-5-2134. [DOI] [PubMed] [Google Scholar]
  11. Henquin J. C., Lambert A. E. Cobalt inhibition of insulin secretion and calcium uptake by isolated rat islets. Am J Physiol. 1975 Jun;228(6):1669–1677. doi: 10.1152/ajplegacy.1975.228.6.1669. [DOI] [PubMed] [Google Scholar]
  12. Henquin J. C., Meissner H. P. The ionic, electrical, and secretory effects of endogenous cyclic adenosine monophosphate in mouse pancreatic B cells: studies with forskolin. Endocrinology. 1984 Sep;115(3):1125–1134. doi: 10.1210/endo-115-3-1125. [DOI] [PubMed] [Google Scholar]
  13. Henquin J. C. Opposite effects of intracellular Ca2+ and glucose on K+ permeability of pancreatic islet cells. Nature. 1979 Jul 5;280(5717):66–68. doi: 10.1038/280066a0. [DOI] [PubMed] [Google Scholar]
  14. Hillaire-Buys D., Bertrand G., Gross R., Loubatières-Mariani M. M. Evidence for an inhibitory A1 subtype adenosine receptor on pancreatic insulin-secreting cells. Eur J Pharmacol. 1987 Apr 7;136(1):109–112. doi: 10.1016/0014-2999(87)90786-2. [DOI] [PubMed] [Google Scholar]
  15. Hoffman B. B., Dall'Aglio E., Hollenbeck C., Chang H., Reaven G. M. Suppression of free fatty acids and triglycerides in normal and hypertriglyceridemic rats by the adenosine receptor agonist phenylisopropyladenosine. J Pharmacol Exp Ther. 1986 Dec;239(3):715–718. [PubMed] [Google Scholar]
  16. Hutter O. F., Rankin A. C. Ionic basis of the hyperpolarizing action of adenyl compounds on sinus venosus of the tortoise heart. J Physiol. 1984 Aug;353:111–125. doi: 10.1113/jphysiol.1984.sp015326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ismail N. A., El Denshary E. E., Montague W. Adenosine and the regulation of insulin secretion by isolated rat islets of Langerhans. Biochem J. 1977 May 15;164(2):409–413. doi: 10.1042/bj1640409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ismail N. A., El-Denshary E. S., Idahl L. A., Lindström P., Sehlin J., Täljedal I. B. Effects of alpha-adrenoceptor agonists and antagonists on insulin secretion, calcium uptake, and rubidium efflux in mouse pancreatic islets. Acta Physiol Scand. 1983 Jun;118(2):167–174. doi: 10.1111/j.1748-1716.1983.tb07257.x. [DOI] [PubMed] [Google Scholar]
  19. Jain K., Logothetopoulos J. Metabolic signals produced by purine ribonucleosides stimulate proinsulin biosynthesis and insulin secretion. Biochem J. 1978 Mar 15;170(3):461–467. doi: 10.1042/bj1700461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jochem G., Nawrath H. Adenosine activates a potassium conductance in guinea-pig atrial heart muscle. Experientia. 1983 Dec 15;39(12):1347–1349. doi: 10.1007/BF01990096. [DOI] [PubMed] [Google Scholar]
  21. Londos C., Cooper D. M., Wolff J. Subclasses of external adenosine receptors. Proc Natl Acad Sci U S A. 1980 May;77(5):2551–2554. doi: 10.1073/pnas.77.5.2551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Londos C., Wolff J. Two distinct adenosine-sensitive sites on adenylate cyclase. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5482–5486. doi: 10.1073/pnas.74.12.5482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Long C. J., Stone T. W. Adenosine reduces agonist-induced production of inositol phosphates in rat aorta. J Pharm Pharmacol. 1987 Dec;39(12):1010–1014. doi: 10.1111/j.2042-7158.1987.tb03149.x. [DOI] [PubMed] [Google Scholar]
  24. Loubatieres-Mariani M. M., Chapal J., Lignon F., Valette G. Structural specificity of nucleotides for insulin secretory action from the isolated perfused rat pancreas. Eur J Pharmacol. 1979 Nov 16;59(3-4):277–286. doi: 10.1016/0014-2999(79)90291-7. [DOI] [PubMed] [Google Scholar]
  25. MacDonald R. L., Skerritt J. H., Werz M. A. Adenosine agonists reduce voltage-dependent calcium conductance of mouse sensory neurones in cell culture. J Physiol. 1986 Jan;370:75–90. doi: 10.1113/jphysiol.1986.sp015923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Malaisse W. J., Brisson G., Malaisse-Lagae F. The stimulus-secretion coupling of glucose-induced insulin release. I. Interaction of epinephrine and alkaline earth cations. J Lab Clin Med. 1970 Dec;76(6):895–902. [PubMed] [Google Scholar]
  27. Malaisse W. J., Sener A., Herchuelz A., Carpinelli A. R., Poloczek P., Winand J., Castagna M. Insulinotropic effect of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate in rat pancreatic islets. Cancer Res. 1980 Oct;40(10):3827–3831. [PubMed] [Google Scholar]
  28. Morgan N. G., Montague W. Studies on the mechanism of inhibition of glucose-stimulated insulin secretion by noradrenaline in rat islets of Langerhans. Biochem J. 1985 Mar 1;226(2):571–576. doi: 10.1042/bj2260571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nakaki T., Nakadate T., Yamamoto S., Kato R. Inhibition of dibutyryl cyclic AMP-induced insulin release by alpha-2 adrenergic stimulation. Life Sci. 1983 Jan 17;32(3):191–195. doi: 10.1016/0024-3205(83)90030-9. [DOI] [PubMed] [Google Scholar]
  30. Paterson A. R., Oliver J. M. Nucleoside transport. II. Inhibition by p-nitrobenzylthioguanosine and related compounds. Can J Biochem. 1971 Feb;49(2):271–274. doi: 10.1139/o71-039. [DOI] [PubMed] [Google Scholar]
  31. Ribeiro J. A., Sebastião A. M. Adenosine receptors and calcium: basis for proposing a third (A3) adenosine receptor. Prog Neurobiol. 1986;26(3):179–209. doi: 10.1016/0301-0082(86)90015-8. [DOI] [PubMed] [Google Scholar]
  32. Schütz W., Raberger G., Kraupp O. Evidence for glucagon-releasing activity of vasoactive adenosine analogues in the conscious dog. Naunyn Schmiedebergs Arch Pharmacol. 1978 Oct;304(3):249–254. doi: 10.1007/BF00507965. [DOI] [PubMed] [Google Scholar]
  33. Suárez J., Valles V. E., Chagoya de Sánchez V. Effect of adenosine on the serum levels of glucose, insulin and glucagon in vivo. Int J Biochem. 1987;19(1):85–88. doi: 10.1016/0020-711x(87)90127-3. [DOI] [PubMed] [Google Scholar]
  34. Tamagawa T., Henquin J. C. Epinephrine modifications of insulin release and of 86Rb+ or 45Ca2+ fluxes in rat islets. Am J Physiol. 1983 Mar;244(3):E245–E252. doi: 10.1152/ajpendo.1983.244.3.E245. [DOI] [PubMed] [Google Scholar]
  35. Thams P., Capito K., Hedeskov C. J. Endogenous substrate proteins for Ca2+-calmodulin-dependent, Ca2+-phospholipid-dependent and cyclic AMP-dependent protein kinases in mouse pancreatic islets. Biochem J. 1984 Jul 1;221(1):247–253. doi: 10.1042/bj2210247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Trussell L. O., Jackson M. B. Adenosine-activated potassium conductance in cultured striatal neurons. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4857–4861. doi: 10.1073/pnas.82.14.4857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Virji M. A., Steffes M. W., Estensen R. D. Phorbol myristate acetate: effect of a tumor promoter on insulin release from isolated rat islets of Langerhans. Endocrinology. 1978 Mar;102(3):706–711. doi: 10.1210/endo-102-3-706. [DOI] [PubMed] [Google Scholar]
  38. Weir G. C., Knowlton S. D., Martin D. B. Nucleotide and nucleoside stimulation of glucagon secretion. Endocrinology. 1975 Oct;97(4):932–936. doi: 10.1210/endo-97-4-932. [DOI] [PubMed] [Google Scholar]
  39. Welsh M., Andersson A., Brolin S., Hellerström C. Effects of glucose, leucine and adenosine on insulin release, 45Ca2+ net uptake, NADH/NAD ratios and oxygen consumption of islets isolated from fed and starved mice. Mol Cell Endocrinol. 1983 Apr;30(1):51–62. doi: 10.1016/0303-7207(83)90200-9. [DOI] [PubMed] [Google Scholar]
  40. Wiedenkeller D. E., Sharp G. W. Effects of forskolin on insulin release and cyclic AMP content in rat pancreatic islets. Endocrinology. 1983 Dec;113(6):2311–2313. doi: 10.1210/endo-113-6-2311. [DOI] [PubMed] [Google Scholar]
  41. Williams M. Purine receptors in mammalian tissues: pharmacology and functional significance. Annu Rev Pharmacol Toxicol. 1987;27:315–345. doi: 10.1146/annurev.pa.27.040187.001531. [DOI] [PubMed] [Google Scholar]
  42. Wollheim C. B., Kikuchi M., Renold A. E., Sharp G. W. Somatostatin- and epinephrine-induced modifications of 45Ca++ fluxes and insulin release in rat pancreatic islets maintained in tissue culture. J Clin Invest. 1977 Nov;60(5):1165–1173. doi: 10.1172/JCI108869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. van Calker D., Müller M., Hamprecht B. Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem. 1979 Nov;33(5):999–1005. doi: 10.1111/j.1471-4159.1979.tb05236.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES