Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Apr 15;259(2):363–368. doi: 10.1042/bj2590363

The role of succinate in the respiratory chain of Trypanosoma brucei procyclic trypomastigotes.

J F Turrens 1
PMCID: PMC1138519  PMID: 2719653

Abstract

Trypanosoma brucei procyclic trypomastigotes were made permeable by using digitonin (0-70 micrograms/mg of protein). This procedure allowed exposure of coupled mitochondria to different substrates. Only succinate and glycerol phosphate (but not NADH-dependent substrates) were capable of stimulating oxygen consumption. Fluorescence studies on intact cells indicated that addition of succinate stimulates NAD(P)H oxidation, contrary to what happens in mammalian mitochondria. Addition of malonate, an inhibitor of succinate dehydrogenase, stimulated NAD(P)H reduction. Malonate also inhibited intact-cell respiration and motility, both of which were restored by further addition of succinate. Experiments carried out with isolated mitochondrial membranes showed that, although the electron transfer from succinate to cytochrome c was inhibitable by antimycin, NADH-cytochrome c reductase was antimycin-insensitive. We postulate that the NADH-ubiquinone segment of the respiratory chain is replaced by NADH-fumarate reductase, which reoxidizes the mitochondrial NADH and in turn generates succinate for the respiratory chain. This hypothesis is further supported by the inhibitory effect on cell growth and respiration of 3-methoxyphenylacetic acid, an inhibitor of the NADH-fumarate reductase of T. brucei.

Full text

PDF
363

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boveris A., Hertig C. M., Turrens J. F. Fumarate reductase and other mitochondrial activities in Trypanosoma cruzi. Mol Biochem Parasitol. 1986 May;19(2):163–169. doi: 10.1016/0166-6851(86)90121-0. [DOI] [PubMed] [Google Scholar]
  2. Cannata J. J., Cazzulo J. J. Glycosomal and mitochondrial malate dehydrogenases in epimastigotes of Trypanosoma cruzi. Mol Biochem Parasitol. 1984 Apr;11:37–49. doi: 10.1016/0166-6851(84)90053-7. [DOI] [PubMed] [Google Scholar]
  3. Cheah K. S. The oxidase systems of Moniezia expansa (Cestoda). Comp Biochem Physiol. 1967 Oct;23(1):277–302. doi: 10.1016/0010-406x(67)90495-1. [DOI] [PubMed] [Google Scholar]
  4. Cunningham I. New culture medium for maintenance of tsetse tissues and growth of trypanosomatids. J Protozool. 1977 May;24(2):325–329. doi: 10.1111/j.1550-7408.1977.tb00987.x. [DOI] [PubMed] [Google Scholar]
  5. Evans D. A., Brown R. C. The effect of diphenylamine on terminal respiration in bloodstream and culture forms of Trypanosoma brucei. J Protozool. 1972 May;19(2):365–369. doi: 10.1111/j.1550-7408.1972.tb03478.x. [DOI] [PubMed] [Google Scholar]
  6. Evans D. A., Brown R. C. The utilization of glucose and proline by culture forms of Trypanosoma brucei. J Protozool. 1972 Nov;19(4):686–690. doi: 10.1111/j.1550-7408.1972.tb03561.x. [DOI] [PubMed] [Google Scholar]
  7. Feagin J. E., Jasmer D. P., Stuart K. Differential mitochondrial gene expression between slender and stumpy bloodforms of Trypanosoma brucei. Mol Biochem Parasitol. 1986 Sep;20(3):207–214. doi: 10.1016/0166-6851(86)90100-3. [DOI] [PubMed] [Google Scholar]
  8. Hart D. T., Misset O., Edwards S. W., Opperdoes F. R. A comparison of the glycosomes (microbodies) isolated from Trypanosoma brucei bloodstream form and cultured procyclic trypomastigotes. Mol Biochem Parasitol. 1984 May;12(1):25–35. doi: 10.1016/0166-6851(84)90041-0. [DOI] [PubMed] [Google Scholar]
  9. Hill G. C. Electron transport systems in kinetoplastida. Biochim Biophys Acta. 1976 Sep 27;456(2):149–193. doi: 10.1016/0304-4173(76)90011-2. [DOI] [PubMed] [Google Scholar]
  10. Jasmer D. P., Feagin J. E., Stuart K. Diverse patterns of expression of the cytochrome c oxidase subunit I gene and unassigned reading frames 4 and 5 during the life cycle of Trypanosoma brucei. Mol Cell Biol. 1985 Nov;5(11):3041–3047. doi: 10.1128/mcb.5.11.3041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Klein R. A., Linstead D. J., Wheeler M. V. Carbon dioxide fixation in trypanosomatids. Parasitology. 1975 Aug;71(1):93–107. doi: 10.1017/s003118200005318x. [DOI] [PubMed] [Google Scholar]
  12. Turrens J. F. Possible role of the NADH-fumarate reductase in superoxide anion and hydrogen peroxide production in Trypanosoma brucei. Mol Biochem Parasitol. 1987 Aug;25(1):55–60. doi: 10.1016/0166-6851(87)90018-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES