Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Apr 15;259(2):427–431. doi: 10.1042/bj2590427

Comparison of desialylation of rat transferrin by cellular and non-cellular methods.

S Irie 1, J J Minguell 1, M Tavassoli 1
PMCID: PMC1138527  PMID: 2719657

Abstract

We have previously shown that the liver endothelium can desialylate the glycoprotein transferrin (Tf). In the present work we provide evidence that asialotransferrin obtained by this means behaves differently on Ricinus communis agglutinin (RCA120) lectin affinity chromatography from asialotransferrin obtained by either neuraminidase treatment or acid hydrolysis. Purified rat transferrin was radiolabelled either with 125I (protein moiety) or with 3H (sialyl residues), and subsequently saturated with iron. It was then passed through an RCA120-agarose column to isolate the fully sialylated component. Sialylated Tf was then desialylated either by incubation with purified rat liver endothelium or, in vitro, by neuraminidase treatment or by acid hydrolysis. The protein was again subjected to RCA120 column chromatography. Although both neuraminidase treatment and acid hydrolysis almost completely desialylated the glycoprotein (as evidenced by near absence of 3H label), the glycoprotein was not retained by the RCA120-agarose column. By contrast, liver endothelium partially desialylated the glycoprotein, but this desialylated fraction was retained by the RCA120-agarose column. These results suggest that desialylation with neuraminidase or acid hydrolysis may be inadequate for functional studies of asialotransferrin.

Full text

PDF
427

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashwell G., Morell A. G. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv Enzymol Relat Areas Mol Biol. 1974;41(0):99–128. doi: 10.1002/9780470122860.ch3. [DOI] [PubMed] [Google Scholar]
  2. Baenziger J. U., Fiete D. Structural determinants of Ricinus communis agglutinin and toxin specificity for oligosaccharides. J Biol Chem. 1979 Oct 10;254(19):9795–9799. [PubMed] [Google Scholar]
  3. Baker E., Morgan E. H. The kinetics of the interaction between rabbit transferrin and reticulocytes. Biochemistry. 1969 Mar;8(3):1133–1141. doi: 10.1021/bi00831a046. [DOI] [PubMed] [Google Scholar]
  4. Bleil J. D., Bretscher M. S. Transferrin receptor and its recycling in HeLa cells. EMBO J. 1982;1(3):351–355. doi: 10.1002/j.1460-2075.1982.tb01173.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bomford A., Young S., Williams R. Intracellular forms of iron during transferrin iron uptake by mitogen-stimulated human lymphocytes. Br J Haematol. 1986 Mar;62(3):487–494. doi: 10.1111/j.1365-2141.1986.tb02960.x. [DOI] [PubMed] [Google Scholar]
  6. Ciechanover A., Schwartz A. L., Dautry-Varsat A., Lodish H. F. Kinetics of internalization and recycling of transferrin and the transferrin receptor in a human hepatoma cell line. Effect of lysosomotropic agents. J Biol Chem. 1983 Aug 25;258(16):9681–9689. [PubMed] [Google Scholar]
  7. David G. S. Solid state lactoperoxidase: a highly stable enzyme for simple, gentle iodination of proteins. Biochem Biophys Res Commun. 1972 Jul 25;48(2):464–471. doi: 10.1016/s0006-291x(72)80074-3. [DOI] [PubMed] [Google Scholar]
  8. Dickson R. B., Hanover J. A., Willingham M. C., Pastan I. Prelysosomal divergence of transferrin and epidermal growth factor during receptor-mediated endocytosis. Biochemistry. 1983 Nov 22;22(24):5667–5674. doi: 10.1021/bi00293a033. [DOI] [PubMed] [Google Scholar]
  9. Enns C. A., Larrick J. W., Suomalainen H., Schroder J., Sussman H. H. Co-migration and internalization of transferrin and its receptor on K562 cells. J Cell Biol. 1983 Aug;97(2):579–585. doi: 10.1083/jcb.97.2.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harding C., Heuser J., Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983 Aug;97(2):329–339. doi: 10.1083/jcb.97.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hatton M. W., März L., Berry L. R., Debanne M. T., Regoeczi E. Bi-and tri-antennary human transferrin glycopeptides and their affinities for the hepatic lectin specific for asialo-glycoproteins. Biochem J. 1979 Sep 1;181(3):633–638. doi: 10.1042/bj1810633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hatton M. W., Regoeczi E., Wong K. L. Studies of the metabolism of asialotransferrins: relationship between the carbohydrate composition of bovine, canine, and porcine asialotransferrins and their metabolic behavior in the rabbit. Can J Biochem. 1974 Oct;52(10):845–853. doi: 10.1139/o74-121. [DOI] [PubMed] [Google Scholar]
  13. Hopkins C. R. Intracellular routing of transferrin and transferrin receptors in epidermoid carcinoma A431 cells. Cell. 1983 Nov;35(1):321–330. doi: 10.1016/0092-8674(83)90235-0. [DOI] [PubMed] [Google Scholar]
  14. Hunt R. C., Marshall-Carlson L. Internalization and recycling of transferrin and its receptor. Effect of trifluoperazine on recycling in human erythroleukemic cells. J Biol Chem. 1986 Mar 15;261(8):3681–3686. [PubMed] [Google Scholar]
  15. Iacopetta B. J., Morgan E. H. The kinetics of transferrin endocytosis and iron uptake from transferrin in rabbit reticulocytes. J Biol Chem. 1983 Aug 10;258(15):9108–9115. [PubMed] [Google Scholar]
  16. Iacopetta B. J., Morgan E. H., Yeoh G. C. Receptor-mediated endocytosis of transferrin by developing erythroid cells from the fetal rat liver. J Histochem Cytochem. 1983 Feb;31(2):336–344. doi: 10.1177/31.2.6300220. [DOI] [PubMed] [Google Scholar]
  17. Irie S., Kishimoto T., Tavassoli M. Desialation of transferrin by rat liver endothelium. J Clin Invest. 1988 Aug;82(2):508–513. doi: 10.1172/JCI113625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Irie S., Tavassoli M. Liver endothelium desialates ceruloplasmin. Biochem Biophys Res Commun. 1986 Oct 15;140(1):94–100. doi: 10.1016/0006-291x(86)91062-4. [DOI] [PubMed] [Google Scholar]
  19. Irie S., Tavassoli M. Transferrin-mediated cellular iron uptake. Am J Med Sci. 1987 Feb;293(2):103–111. doi: 10.1097/00000441-198702000-00007. [DOI] [PubMed] [Google Scholar]
  20. Karin M., Mintz B. Receptor-mediated endocytosis of transferrin in developmentally totipotent mouse teratocarcinoma stem cells. J Biol Chem. 1981 Apr 10;256(7):3245–3252. [PubMed] [Google Scholar]
  21. Kataoka M., Tavassoli M. The role of liver endothelium in the binding and uptake of ceruloplasmin: studies with colloidal gold probe. J Ultrastruct Res. 1985 Feb;90(2):194–202. doi: 10.1016/0889-1605(85)90109-0. [DOI] [PubMed] [Google Scholar]
  22. Kishimoto T., Tavassoli M. Double labeling of transferrin: tritium labeling of sialic acid and 125I or 59Fe labeling of the protein moiety. Anal Biochem. 1986 Mar;153(2):324–329. doi: 10.1016/0003-2697(86)90099-0. [DOI] [PubMed] [Google Scholar]
  23. Kishimoto T., Tavassoli M. Endothelial binding of transferrin in fractionated liver cell suspensions. Biochim Biophys Acta. 1985 Jul 30;846(1):14–20. doi: 10.1016/0167-4889(85)90104-1. [DOI] [PubMed] [Google Scholar]
  24. Kishimoto T., Tavassoli M. Transendothelial transport (transcytosis) of iron-transferrin complex in the rat liver. Am J Anat. 1987 Mar;178(3):241–249. doi: 10.1002/aja.1001780305. [DOI] [PubMed] [Google Scholar]
  25. Klausner R. D., Van Renswoude J., Ashwell G., Kempf C., Schechter A. N., Dean A., Bridges K. R. Receptor-mediated endocytosis of transferrin in K562 cells. J Biol Chem. 1983 Apr 25;258(8):4715–4724. [PubMed] [Google Scholar]
  26. Lamb J. E., Ray F., Ward J. H., Kushner J. P., Kaplan J. Internalization and subcellular localization of transferrin and transferrin receptors in HeLa cells. J Biol Chem. 1983 Jul 25;258(14):8751–8758. [PubMed] [Google Scholar]
  27. Larrick J. W., Enns C., Raubitschek A., Weintraub H. Receptor-mediated endocytosis of human transferrin and its cell surface receptor. J Cell Physiol. 1985 Aug;124(2):283–287. doi: 10.1002/jcp.1041240217. [DOI] [PubMed] [Google Scholar]
  28. Light A., Morgan E. H. Transferrin endocytosis in reticulocytes: an electron microscope study using colloidal gold. Scand J Haematol. 1982 Mar;28(3):205–214. doi: 10.1111/j.1600-0609.1982.tb00516.x. [DOI] [PubMed] [Google Scholar]
  29. Nicolson G. L., Blaustein J. The interaction of Ricinus communis agglutinin with normal and tumor cell surfaces. Biochim Biophys Acta. 1972 May 9;266(2):543–547. doi: 10.1016/0005-2736(72)90109-5. [DOI] [PubMed] [Google Scholar]
  30. Pardoe G. I., Bird G. W., Uhlenbruck G. On the specificity of lectins with a broad agglutination spectrum. I. The nature of the specific receptors for Ricinus communis and Solanum tuberosum Lectins. Z Immunitatsforsch Allerg Klin Immunol. 1969 May;137(5):442–457. [PubMed] [Google Scholar]
  31. Regoeczi E., Chindemi P. A., Debanne M. T. Transferrin glycans: a possible link between alcoholism and hepatic siderosis. Alcohol Clin Exp Res. 1984 May-Jun;8(3):287–292. doi: 10.1111/j.1530-0277.1984.tb05513.x. [DOI] [PubMed] [Google Scholar]
  32. Regoeczi E., Taylor P., Debanne M. T., März L., Hatton M. W. Three types of human asialo-transferrin and their interactions with the rat liver. Biochem J. 1979 Nov 15;184(2):399–407. doi: 10.1042/bj1840399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schreiber G., Dryburgh H., Millership A., Matsuda Y., Inglis A., Phillips J., Edwards K., Maggs J. The synthesis and secretion of rat transferrin. J Biol Chem. 1979 Dec 10;254(23):12013–12019. [PubMed] [Google Scholar]
  34. Seglen P. O. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83. doi: 10.1016/s0091-679x(08)61797-5. [DOI] [PubMed] [Google Scholar]
  35. Sibille J. C., Octave J. N., Schneider Y. J., Trouet A., Crichton R. R. Transferrin protein and iron uptake by cultured hepatocytes. FEBS Lett. 1982 Dec 27;150(2):365–369. doi: 10.1016/0014-5793(82)80769-2. [DOI] [PubMed] [Google Scholar]
  36. Stein B. S., Bensch K. G., Sussman H. H. Complete inhibition of transferrin recycling by monensin in K562 cells. J Biol Chem. 1984 Dec 10;259(23):14762–14772. [PubMed] [Google Scholar]
  37. Stibler H., Borg S. Evidence of a reduced sialic acid content in serum transferrin in male alcoholics. Alcohol Clin Exp Res. 1981 Fall;5(4):545–549. doi: 10.1111/j.1530-0277.1981.tb05358.x. [DOI] [PubMed] [Google Scholar]
  38. Storey E. L., Anderson G. J., Mack U., Powell L. W., Halliday J. W. Desialylated transferrin as a serological marker of chronic excessive alcohol ingestion. Lancet. 1987 Jun 6;1(8545):1292–1294. doi: 10.1016/s0140-6736(87)90544-7. [DOI] [PubMed] [Google Scholar]
  39. Takahashi K., Tavassoli M. Biphasic uptake of iron-transferrin complex by L1210 murine leukemia cells and rat reticulocytes. Biochim Biophys Acta. 1982 Feb 8;685(1):6–12. doi: 10.1016/0005-2736(82)90027-x. [DOI] [PubMed] [Google Scholar]
  40. Tavassoli M. Desialation of transferrin by liver endothelium: evidence for two cellular pathways for transferrin metabolism. Trans Assoc Am Physicians. 1986;99:219–225. [PubMed] [Google Scholar]
  41. Tavassoli M., Kishimoto T., Kataoka M. Liver endothelium mediates the hepatocyte's uptake of ceruloplasmin. J Cell Biol. 1986 Apr;102(4):1298–1303. doi: 10.1083/jcb.102.4.1298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tavassoli M., Kishimoto T., Soda R., Kataoka M., Harjes K. Liver endothelium mediates the uptake of iron-transferrin complex by hepatocytes. Exp Cell Res. 1986 Aug;165(2):369–379. doi: 10.1016/0014-4827(86)90591-4. [DOI] [PubMed] [Google Scholar]
  43. Thorstensen K., Romslo I. Uptake of iron from transferrin by isolated rat hepatocytes. A redox-mediated plasma membrane process? J Biol Chem. 1988 Jun 25;263(18):8844–8850. [PubMed] [Google Scholar]
  44. Van Lenten L., Ashwell G. Studies on the chemical and enzymatic modification of glycoproteins. A general method for the tritiation of sialic acid-containing glycoproteins. J Biol Chem. 1971 Mar 25;246(6):1889–1894. [PubMed] [Google Scholar]
  45. Willingham M. C., Hanover J. A., Dickson R. B., Pastan I. Morphologic characterization of the pathway of transferrin endocytosis and recycling in human KB cells. Proc Natl Acad Sci U S A. 1984 Jan;81(1):175–179. doi: 10.1073/pnas.81.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yamashiro D. J., Tycko B., Fluss S. R., Maxfield F. R. Segregation of transferrin to a mildly acidic (pH 6.5) para-Golgi compartment in the recycling pathway. Cell. 1984 Jul;37(3):789–800. doi: 10.1016/0092-8674(84)90414-8. [DOI] [PubMed] [Google Scholar]
  47. Young S. P., Roberts S., Bomford A. Intracellular processing of transferrin and iron by isolated rat hepatocytes. Biochem J. 1985 Dec 15;232(3):819–823. doi: 10.1042/bj2320819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. van Renswoude J., Bridges K. R., Harford J. B., Klausner R. D. Receptor-mediated endocytosis of transferrin and the uptake of fe in K562 cells: identification of a nonlysosomal acidic compartment. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6186–6190. doi: 10.1073/pnas.79.20.6186. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES